Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_5_a7, author = {A. A. Tuganbaev}, title = {Rings over which all modules are $I_0$-modules}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {193--200}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/} }
A. A. Tuganbaev. Rings over which all modules are $I_0$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/
[1] Abyzov A. N., “Zamknutost slabo regulyarnye modulei otnositelno pryamykh summ”, Izv. vyssh. uchebn. zaved. Matematika, 2003, no. 9, 3–5 | MR
[2] Abyzov A. N., “Slabo regulyarnye moduli nad polusovershennymi koltsami”, Chebyshevskii sb., 4:1 (2003), 4–9 | MR | Zbl
[3] Abyzov A. N., “Slabo regulyarnye moduli”, Izv. vyssh. uchebn. zaved. Matematika, 2004, no. 3, 3–6 | MR | Zbl
[4] Tuganbaev A. A., “Moduli s bolshim chislom pryamykh slagaemykh”, Fundament. i prikl. mat., 12:8 (2006), 233–241 | MR
[5] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli poluregulyarny”, Fundament. i prikl. mat., 13:2 (2007), 185–194 | MR
[6] Khakmi Kh. I., “Silno regulyarnye i slabo regulyarnye koltsa i moduli”, Izv. vyssh. uchebn. zaved. Matematika, 1994, no. 5, 60–65 | MR | Zbl
[7] Dung N. V., Smith P. F., “On semiartinian $V$-modules”, J. Pure Appl. Algebra, 82:1 (1992), 27–37 | DOI | MR | Zbl
[8] Hamza H., “$I_0$-rings and $I_0$-modules”, Math. J. Okayama Univ., 40 (1998), 91–97 | MR
[9] Nicholson W. K., “$I$-rings”, Trans. Amer. Math. Soc., 207 (1975), 361–373 | DOI | MR | Zbl
[10] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl
[11] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci., 109:3 (2002), 1509–1588 | DOI | MR | Zbl
[12] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl