Rings over which all modules are $I_0$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring that does not contain an infinite set of idempotents that are orthogonal modulo the ideal $\operatorname{SI}(A_A)$. It is proved that all $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian right V-ring or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring and the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
@article{FPM_2007_13_5_a7,
     author = {A. A. Tuganbaev},
     title = {Rings over which all modules are $I_0$-modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings over which all modules are $I_0$-modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 193
EP  - 200
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/
LA  - ru
ID  - FPM_2007_13_5_a7
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings over which all modules are $I_0$-modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 193-200
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/
%G ru
%F FPM_2007_13_5_a7
A. A. Tuganbaev. Rings over which all modules are $I_0$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/