Rings over which all modules are $I_0$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring that does not contain an infinite set of idempotents that are orthogonal modulo the ideal $\operatorname{SI}(A_A)$. It is proved that all $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian right V-ring or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring and the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
@article{FPM_2007_13_5_a7,
     author = {A. A. Tuganbaev},
     title = {Rings over which all modules are $I_0$-modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--200},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Rings over which all modules are $I_0$-modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 193
EP  - 200
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/
LA  - ru
ID  - FPM_2007_13_5_a7
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Rings over which all modules are $I_0$-modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 193-200
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/
%G ru
%F FPM_2007_13_5_a7
A. A. Tuganbaev. Rings over which all modules are $I_0$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/

[1] Abyzov A. N., “Zamknutost slabo regulyarnye modulei otnositelno pryamykh summ”, Izv. vyssh. uchebn. zaved. Matematika, 2003, no. 9, 3–5 | MR

[2] Abyzov A. N., “Slabo regulyarnye moduli nad polusovershennymi koltsami”, Chebyshevskii sb., 4:1 (2003), 4–9 | MR | Zbl

[3] Abyzov A. N., “Slabo regulyarnye moduli”, Izv. vyssh. uchebn. zaved. Matematika, 2004, no. 3, 3–6 | MR | Zbl

[4] Tuganbaev A. A., “Moduli s bolshim chislom pryamykh slagaemykh”, Fundament. i prikl. mat., 12:8 (2006), 233–241 | MR

[5] Tuganbaev A. A., “Koltsa, nad kotorymi vse moduli poluregulyarny”, Fundament. i prikl. mat., 13:2 (2007), 185–194 | MR

[6] Khakmi Kh. I., “Silno regulyarnye i slabo regulyarnye koltsa i moduli”, Izv. vyssh. uchebn. zaved. Matematika, 1994, no. 5, 60–65 | MR | Zbl

[7] Dung N. V., Smith P. F., “On semiartinian $V$-modules”, J. Pure Appl. Algebra, 82:1 (1992), 27–37 | DOI | MR | Zbl

[8] Hamza H., “$I_0$-rings and $I_0$-modules”, Math. J. Okayama Univ., 40 (1998), 91–97 | MR

[9] Nicholson W. K., “$I$-rings”, Trans. Amer. Math. Soc., 207 (1975), 361–373 | DOI | MR | Zbl

[10] Tuganbaev A. A., Rings Close to Regular, Kluwer Academic, Dordrecht, 2002 | MR | Zbl

[11] Tuganbaev A. A., “Semiregular, weakly regular, and $\pi$-regular rings”, J. Math. Sci., 109:3 (2002), 1509–1588 | DOI | MR | Zbl

[12] Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991 | MR | Zbl