Rings over which all modules are $I_0$-modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a ring that does not contain an infinite set of idempotents that are orthogonal modulo the ideal $\operatorname{SI}(A_A)$. It is proved that all $A$-modules are $I_0$-modules if and only if either $A$ is a right semi-Artinian right V-ring or $A/\operatorname{SI}(A_A)$ is an Artinian serial ring and the square of the Jacobson radical of $A/\operatorname{SI}(A_A)$ is equal to zero.
@article{FPM_2007_13_5_a7,
author = {A. A. Tuganbaev},
title = {Rings over which all modules are $I_0$-modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {193--200},
publisher = {mathdoc},
volume = {13},
number = {5},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/}
}
A. A. Tuganbaev. Rings over which all modules are $I_0$-modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 193-200. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a7/