Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_5_a6, author = {A. A. Mikhalev and A. V. Mikhalev and A. A. Chepovskii and K. Champagnier}, title = {Primitive elements of free nonassociative algebras}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {171--192}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/} }
TY - JOUR AU - A. A. Mikhalev AU - A. V. Mikhalev AU - A. A. Chepovskii AU - K. Champagnier TI - Primitive elements of free nonassociative algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 171 EP - 192 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/ LA - ru ID - FPM_2007_13_5_a6 ER -
%0 Journal Article %A A. A. Mikhalev %A A. V. Mikhalev %A A. A. Chepovskii %A K. Champagnier %T Primitive elements of free nonassociative algebras %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 171-192 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/ %G ru %F FPM_2007_13_5_a6
A. A. Mikhalev; A. V. Mikhalev; A. A. Chepovskii; K. Champagnier. Primitive elements of free nonassociative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 171-192. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/
[1] Zolotykh A. A., Mikhalev A. A., “Rang elementa svobodnoi tsvetnoi ($p$-)superalgebry Li”, Dokl. RAN, 334:6 (1994), 690–693 | MR | Zbl
[2] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Mat. sb., 20 (1947), 239–262 | MR | Zbl
[3] Umirbaev U. U., “O shreierovykh mnogoobraziyakh algebr”, Algebra i logika, 33:3 (1994), 317–340 | MR | Zbl
[4] Shampaner K., “Algoritmy realizatsii ranga i primitivnosti sistem elementov svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. mat., 6:4 (2000), 1229–1238 | MR
[5] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Combinatorial properties of free algebras of Schreier varieties of algebras”, Polynomial Identities and Combinatorial Methods, eds. A. Giambruno, A. Regev, M. Zaicev, Marcel Dekker, 2003, 47–99 | MR | Zbl
[6] Cohn P. M., “On a generalization of the Euclidean algorithm”, Math. Proc. Cambridge Philos. Soc., 57 (1961), 18–30 | DOI | MR | Zbl
[7] Cohn P. M., J. Algebra, 1 (1964), 47–69 | DOI | MR | Zbl
[8] Cohn P. M., Free Rings and Their Relations, Academic Press, 1985 | MR | Zbl
[9] Lewin J., “On Schreier varieties of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl
[10] Lewin J., “Free modules over free algebras and free group algebras: The Schreier technique”, Trans. Amer. Math. Soc., 145 (1969), 455–465 | DOI | MR | Zbl
[11] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, Springer New, New York, 2004 | MR
[12] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Automorphic orbits of elements of free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR | Zbl
[13] Mikhalev A. A., Zolotykh A. A., “Rank and primitivity of elements of free colour Lie ($p$-)superalgebras”, Internat. J. Algebra Comput., 4 (1994), 617–656 | DOI | MR
[14] Mikhalev A. A., Zolotykh A,A., Combinatorial Aspects of Lie Superalgebras, CRC Press, Boca Raton, 1995 | MR | Zbl