Primitive elements of free nonassociative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 171-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Improved algorithms to construct complements of primitive systems of elements of free nonassociative algebras with respect to free generating sets and algorithms to realize the rank of a system of elements are constructed and implemented.
@article{FPM_2007_13_5_a6,
     author = {A. A. Mikhalev and A. V. Mikhalev and A. A. Chepovskii and K. Champagnier},
     title = {Primitive elements of free nonassociative algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {171--192},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/}
}
TY  - JOUR
AU  - A. A. Mikhalev
AU  - A. V. Mikhalev
AU  - A. A. Chepovskii
AU  - K. Champagnier
TI  - Primitive elements of free nonassociative algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 171
EP  - 192
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/
LA  - ru
ID  - FPM_2007_13_5_a6
ER  - 
%0 Journal Article
%A A. A. Mikhalev
%A A. V. Mikhalev
%A A. A. Chepovskii
%A K. Champagnier
%T Primitive elements of free nonassociative algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 171-192
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/
%G ru
%F FPM_2007_13_5_a6
A. A. Mikhalev; A. V. Mikhalev; A. A. Chepovskii; K. Champagnier. Primitive elements of free nonassociative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 171-192. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a6/

[1] Zolotykh A. A., Mikhalev A. A., “Rang elementa svobodnoi tsvetnoi ($p$-)superalgebry Li”, Dokl. RAN, 334:6 (1994), 690–693 | MR | Zbl

[2] Kurosh A. G., “Neassotsiativnye svobodnye algebry i svobodnye proizvedeniya algebr”, Mat. sb., 20 (1947), 239–262 | MR | Zbl

[3] Umirbaev U. U., “O shreierovykh mnogoobraziyakh algebr”, Algebra i logika, 33:3 (1994), 317–340 | MR | Zbl

[4] Shampaner K., “Algoritmy realizatsii ranga i primitivnosti sistem elementov svobodnykh neassotsiativnykh algebr”, Fundament. i prikl. mat., 6:4 (2000), 1229–1238 | MR

[5] Artamonov V. A., Mikhalev A. A., Mikhalev A. V., “Combinatorial properties of free algebras of Schreier varieties of algebras”, Polynomial Identities and Combinatorial Methods, eds. A. Giambruno, A. Regev, M. Zaicev, Marcel Dekker, 2003, 47–99 | MR | Zbl

[6] Cohn P. M., “On a generalization of the Euclidean algorithm”, Math. Proc. Cambridge Philos. Soc., 57 (1961), 18–30 | DOI | MR | Zbl

[7] Cohn P. M., J. Algebra, 1 (1964), 47–69 | DOI | MR | Zbl

[8] Cohn P. M., Free Rings and Their Relations, Academic Press, 1985 | MR | Zbl

[9] Lewin J., “On Schreier varieties of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl

[10] Lewin J., “Free modules over free algebras and free group algebras: The Schreier technique”, Trans. Amer. Math. Soc., 145 (1969), 455–465 | DOI | MR | Zbl

[11] Mikhalev A. A., Shpilrain V., Yu J.-T., Combinatorial Methods. Free Groups, Polynomials, and Free Algebras, Springer New, New York, 2004 | MR

[12] Mikhalev A. A., Umirbaev U. U., Yu J.-T., “Automorphic orbits of elements of free non-associative algebras”, J. Algebra, 243 (2001), 198–223 | DOI | MR | Zbl

[13] Mikhalev A. A., Zolotykh A. A., “Rank and primitivity of elements of free colour Lie ($p$-)superalgebras”, Internat. J. Algebra Comput., 4 (1994), 617–656 | DOI | MR

[14] Mikhalev A. A., Zolotykh A,A., Combinatorial Aspects of Lie Superalgebras, CRC Press, Boca Raton, 1995 | MR | Zbl