Image coding with afterwards possible optimal decoding
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 225-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

Instead of decompressing the whole image in practice it is often necessary to decompress a certain part of it. Most methods upon the request of certain image fragment, in particular a small one, have to at first decompress the whole image, thereby wasting excess memory resources. Therefore, these methods have a limited use, since there might not be enough memory resources to decompress the whole image on the hardware being used. The new coding method SS-SPIHT presented in the paper permits the decompression of only the needed image fragment. Herewith, the amount of memory used by the algorithm is comparable on the order to the amount of memory used by the image fragment, and not the image in whole. Aside from this, these fragments can be extracted at various scales by the proposed method SS-SPIHT. Interactive analysis of huge images is possible due to this feature, i.e., viewing images the resolution of which in any dimension reaches several thousand or even hundred thousand points on a low memory device, for instance, on a palm-held.
@article{FPM_2007_13_5_a10,
     author = {A. V. Shokurov},
     title = {Image coding with afterwards possible optimal decoding},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {225--255},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a10/}
}
TY  - JOUR
AU  - A. V. Shokurov
TI  - Image coding with afterwards possible optimal decoding
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 225
EP  - 255
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a10/
LA  - ru
ID  - FPM_2007_13_5_a10
ER  - 
%0 Journal Article
%A A. V. Shokurov
%T Image coding with afterwards possible optimal decoding
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 225-255
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a10/
%G ru
%F FPM_2007_13_5_a10
A. V. Shokurov. Image coding with afterwards possible optimal decoding. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 5, pp. 225-255. http://geodesic.mathdoc.fr/item/FPM_2007_13_5_a10/

[1] Shokurov A. V., Mikhalëv A. V., “Optimalnoe ispolzovanie veivlet-komponent”, Uspekhi mat. nauk, 62:4 (2007), 171–172 | MR | Zbl

[2] Danyali H., Mertins A., “Fully spatial and SNR scalable, SPIHT-based image coding for transmission over heterogeneous networks”, J. Telecommunications Information Technol., 2 (2003), 92–98

[3] ISO/IEC 10918-1 ITU Recommendation, T. 81: Information Technology – Digital Compression and of Continuous-Tone Still Images – Requirements and Guidelines

[4] ISO/IEC fdc-15444-1 preprintinfo JPEG2000 Image Coding System

[5] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, 1999 | MR | Zbl

[6] Pratt W. K., Digital Image Processing, Wiley, 2001 | Zbl

[7] Said A., Pearlman W. A., “A new fast and efficient image codec based on set partitioning in hierarchical trees”, IEEE Trans. Circuits Systems Video Technol., 6 (1996), 243–250 | DOI

[8] Taubman D., “High performance scalable image compression with EBCOT”, IEEE Trans. Image Processing, 9:7 (2000), 1151–1170 | DOI

[9] Taubman D., Ordentlich E., Weinberger M., Seroussi G., “Embedded block coding in JPEG2000”, Signal Processing Image Communication, 17:1 (2002), 49–72 | DOI

[10] Wheeler F. W., Pearlman W. A., “Combined spatial and subband block coding of images”, Proc. Int. Conf. on Image Processing, ICIP'00, Vol 3, 861–864.

[11] The USC-SIPI Image Database: Aerials: 3.2.25 (Pentagon), http://sipi.usc.edu/database/database.cgi?volume=aerials&image=37#top