Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_4_a8, author = {O. V. Markova}, title = {Length computation of matrix subalgebras of special type}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {165--197}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a8/} }
O. V. Markova. Length computation of matrix subalgebras of special type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 165-197. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a8/
[1] Markova O. V., “O dline algebry verkhnetreugolnykh matrits”, Uspekhi mat. nauk, 60:5 (2005), 177–178 | MR | Zbl
[2] Brown W. C., Call F. W., “Maximal commutative subalgebras of $n\times n$ matrices”, Commun. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl
[3] Courter R. C., “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl
[4] Horn R. A., Johnson C. R., Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991 | MR
[5] Laffey T. J., “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR | Zbl
[6] Longstaff W. E., “Burnside's theorem: Irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl
[7] Longstaff W. E., Rosenthal P., “Generators of matrix incidence algebras”, Australas. J. Combin., 22 (2000), 117–121 | MR | Zbl
[8] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl
[9] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[10] Schur I., “Zur Theorie der vertauschbaren Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | DOI | Zbl
[11] Spencer A. J. M., Rivlin R. S., “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Rational Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl
[12] Spencer A. J. M., Rivlin R. S., “Further results in the theory of matrix polynomials”, Arch. Rational Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl
[13] Wadsworth A., “The algebra generated by two commuting matrices”, Linear and Multilinear Algebra, 27 (1990), 159–162 | DOI | MR | Zbl