Length computation of matrix subalgebras of special type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 165-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb F$ be a field and let $\mathcal A$ be a finite-dimensional $\mathbb F$-algebra. We define the length of a finite generating set of this algebra as the smallest number $k$ such that words of length not greater than $k$ generate $\mathcal A$ as a vector space, and the length of the algebra is the maximum of the lengths of its generating sets. In this article, we give a series of examples of length computation for matrix subalgebras. In particular, we evaluate the lengths of certain upper triangular matrix subalgebras and their direct sums, and the lengths of classical commutative matrix subalgebras. The connection between the length of an algebra and the lengths of its subalgebras is also studied.
@article{FPM_2007_13_4_a8,
     author = {O. V. Markova},
     title = {Length computation of matrix subalgebras of special type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {165--197},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a8/}
}
TY  - JOUR
AU  - O. V. Markova
TI  - Length computation of matrix subalgebras of special type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 165
EP  - 197
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a8/
LA  - ru
ID  - FPM_2007_13_4_a8
ER  - 
%0 Journal Article
%A O. V. Markova
%T Length computation of matrix subalgebras of special type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 165-197
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a8/
%G ru
%F FPM_2007_13_4_a8
O. V. Markova. Length computation of matrix subalgebras of special type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 165-197. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a8/

[1] Markova O. V., “O dline algebry verkhnetreugolnykh matrits”, Uspekhi mat. nauk, 60:5 (2005), 177–178 | MR | Zbl

[2] Brown W. C., Call F. W., “Maximal commutative subalgebras of $n\times n$ matrices”, Commun. Algebra, 21:12 (1993), 4439–4460 | DOI | MR | Zbl

[3] Courter R. C., “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl

[4] Horn R. A., Johnson C. R., Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991 | MR

[5] Laffey T. J., “Simultaneous reduction of sets of matrices under similarity”, Linear Algebra Appl., 84 (1986), 123–138 | DOI | MR | Zbl

[6] Longstaff W. E., “Burnside's theorem: Irreducible pairs of transformations”, Linear Algebra Appl., 382 (2004), 247–269 | DOI | MR | Zbl

[7] Longstaff W. E., Rosenthal P., “Generators of matrix incidence algebras”, Australas. J. Combin., 22 (2000), 117–121 | MR | Zbl

[8] Pappacena C. J., “An upper bound for the length of a finite-dimensional algebra”, J. Algebra, 197 (1997), 535–545 | DOI | MR | Zbl

[9] Paz A., “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear and Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl

[10] Schur I., “Zur Theorie der vertauschbaren Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | DOI | Zbl

[11] Spencer A. J. M., Rivlin R. S., “The theory of matrix polynomials and its applications to the mechanics of isotropic continua”, Arch. Rational Mech. Anal., 2 (1959), 309–336 | DOI | MR | Zbl

[12] Spencer A. J. M., Rivlin R. S., “Further results in the theory of matrix polynomials”, Arch. Rational Mech. Anal., 4 (1960), 214–230 | DOI | MR | Zbl

[13] Wadsworth A., “The algebra generated by two commuting matrices”, Linear and Multilinear Algebra, 27 (1990), 159–162 | DOI | MR | Zbl