Nonnegative matrices as a~tool to model population dynamics: Classical models and contemporary expansions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 145-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

Matrix models of age- or/and stage-structured populations rest upon the Perron–Frobenius theorem for nonnegative matrices, and the life cycle graph for individuals of a given biological species plays a major role in model construction and analysis. A summary of classical results in the theory of matrix models for population dynamics is presented, and generalizations are proposed, which have been motivated by a need to account for an additional structure, i.e., to classify individuals not only by age, but also by an additional (discrete) characteristic: size, physiological status, stage of development, etc.
@article{FPM_2007_13_4_a7,
     author = {D. O. Logofet and I. N. Belova},
     title = {Nonnegative matrices as a~tool to model population dynamics: {Classical} models and contemporary expansions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a7/}
}
TY  - JOUR
AU  - D. O. Logofet
AU  - I. N. Belova
TI  - Nonnegative matrices as a~tool to model population dynamics: Classical models and contemporary expansions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 145
EP  - 164
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a7/
LA  - ru
ID  - FPM_2007_13_4_a7
ER  - 
%0 Journal Article
%A D. O. Logofet
%A I. N. Belova
%T Nonnegative matrices as a~tool to model population dynamics: Classical models and contemporary expansions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 145-164
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a7/
%G ru
%F FPM_2007_13_4_a7
D. O. Logofet; I. N. Belova. Nonnegative matrices as a~tool to model population dynamics: Classical models and contemporary expansions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 145-164. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a7/

[1] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[3] Klochkova I. N., “Obobschenie teoremy o reproduktivnom potentsiale dlya matrits Logofeta”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 2004, no. 3, 45–48 | MR | Zbl

[4] Logofet D. O., “Puti i tsikly v orgrafe kak instrumenty kharakterizatsii nekotorykh klassov matrits”, Dokl. RAN, 367:3 (1999), 295–298 | MR | Zbl

[5] Logofet D. O., “Tri istochnika i tri sostavnye chasti formalizma populyatsii s diskretnoi stadiinoi i vozrastnoi strukturami”, Mat. modelirovanie, 14:12 (2002), 11–22 | MR | Zbl

[6] Logofet D. O., Klochkova I. N., “Matematika modeli Lefkovicha: reproduktivnyi potentsial i asimptoticheskie tsikly”, Mat. modelirovanie, 14:10 (2002), 116–126 | MR | Zbl

[7] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[8] Serebryakova T. I., Sokolova T. G., Tsenopopulyatsii rastenii (ocherki populyatsionnoi biologii), Nauka, M., 1988

[9] Ulanova N. G., Demidova A. N., Logofet D. O., Klochkova I. N., “Struktura i dinamika tsenopopulyatsii veinika sedeyuschego Calamagrostis canescens: modelnyi podkhod”, Zhurn. obschei biologii, 63:6 (2002), 509–521

[10] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Nauka, M., 1970

[11] Bernardelli H., “Population waves”, J. Burma Research Soc., 31 (1941), 1–18

[12] Birkhoff G., “Extensions of Jentzsch's theorem”, Trans. Amer. Math. Soc., 85 (1957), 219–227 | DOI | MR | Zbl

[13] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, Sinauer Associates, Sunderland, 1989

[14] Caswell H., Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed., Sinauer Associates, Sunderland, 2001

[15] Cohen J. E., “Ergodic theorems in demography”, Bull. Amer. Math. Ass., 1 (1979), 275–295 | DOI | MR | Zbl

[16] Csetenyi A. I., Logofet D. O., “Leslie model revisited: Some generalizations for block structures”, Ecological Modelling, 48 (1989), 277–290 | DOI

[17] Cull P., Vogt A., “The periodic limits for the Leslie model”, Math. Biosci., 21 (1974), 39–54 | DOI | MR | Zbl

[18] Goodman L. A., “The analysis of population growth when the birth and death rates depend upon several factors”, Biometrics, 25 (1969), 659–681 | DOI | MR

[19] Hansen P. E., “Leslie matrix models: A mathematical survey”, Papers on Mathematical Ecology. I, ed. A. I. Csetenyi, Karl Marx University of Economics, Budapest, 1986, 54–106 | MR

[20] Harary F., Norman R. Z., Cartwright D., Structural Models: An Introduction to the Theory of Directed Graphs, Wiley, New York, 1965, Chap. 7 | MR | Zbl

[21] Horn R. A., Johnson C. R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[22] Law R., “A model for the dynamics of a plant population containing individuals classified by age and size”, Ecology, 64 (1983), 224–230 | DOI

[23] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21 (1965), 1–18 | DOI

[24] Leslie P. H., “On the use of matrices in certain population mathematics”, Biometrika, 33 (1945), 183–212 | DOI | MR | Zbl

[25] Lewis E. G., “On the generation and growth of a population”, Sankhyā. The Indian J. Statistics, 6 (1942), 93–96

[26] Logofet D. O., Matrices and Graphs: Stability Problems in Mathematical Ecology, CRC Press, Boca Raton, 1993

[27] Logofet D. O., Ulanova N. G., Klochkova I. N., Demidova A. N., “Structure and dynamics of a clonal plant population: Classical model results in a non-classic formulation”, Ecological Modelling, 192 (2006), 95–106 | DOI

[28] Maybee J. S., Olesky D. D., van den Driessche P., Wiener G., “Matrices, digraphs, and determinants”, SIAM J. Matrix Anal. Appl., 10 (1989), 500–519 | DOI | MR | Zbl

[29] Parlett B., “Ergodic properties of population.I. The one-sex model”, Pop. Biol., 1 (1970), 191–207 | DOI | MR | Zbl

[30] Seneta E., Non-Negative Matrices and Markov Chains, 2nd ed., Springer-Verlag, New York, 1981, Chap. 3 | MR | Zbl

[31] Ulanova N. G., “Plant age stages during succession in woodland clearing in central Russia”, Vegetation Science in Retrospect and Perspective, Opulus, Uppsala, 2000, 80–83

[32] Usher M. B., “Developments in the Leslie matrix models”, Mathematical Models in Ecology, ed. J. N. R. Jeffres, Blackwell, Oxford, 1972, 29–60