Idempotent matrix lattices over distributive lattices
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 121-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the partially ordered set of idempotent matrices over distributive lattices with the partial order induced by a set of lattice matrices is studied. It is proved that this set is a lattice; the formulas for meet and join calculation are obtained. In the lattice of idempotent matrices over a finite distributive lattice, all atoms and coatoms are described. We prove that the lattice of quasi-orders over an $n$-element set $\operatorname{Qord}(n)$ is not graduated for $n\geq3$ and calculate the greatest and least lengths of maximal chains in this lattice. We also prove that the interval $([I,J]_\leq,\leq)$ of idempotent $(n\times n)$-matrices over $\{\tilde0,\tilde1\}$-lattices is isomorphic to the lattice of quasi-orders $\operatorname{Qord}(n)$. Using this isomorphism, we calculate the lattice height of idempotent $(\tilde0,\tilde1)$-matrices. We obtain a structural criterion of idempotent matrices over distributive lattices.
@article{FPM_2007_13_4_a6,
     author = {V. G. Kumarov},
     title = {Idempotent matrix lattices over distributive lattices},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {121--144},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a6/}
}
TY  - JOUR
AU  - V. G. Kumarov
TI  - Idempotent matrix lattices over distributive lattices
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 121
EP  - 144
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a6/
LA  - ru
ID  - FPM_2007_13_4_a6
ER  - 
%0 Journal Article
%A V. G. Kumarov
%T Idempotent matrix lattices over distributive lattices
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 121-144
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a6/
%G ru
%F FPM_2007_13_4_a6
V. G. Kumarov. Idempotent matrix lattices over distributive lattices. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 121-144. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a6/

[1] Birkgof G., Teoriya reshëtok, Nauka, M., 1984 | MR

[2] Bisli L.-B., Guterman A. E., Kang K. T., Song S. Z., “Idempotentye matritsy i mazhorirovanie”, Fundament. i prikl. mat., 13:1 (2007), 11–29 | MR

[3] Grettser G., Obschaya teoriya reshëtok, Mir, M., 1982 | MR

[4] Marenich E. E., Kumarov V. G., “Obratimye matritsy nad reshëtkami s psevdodopolneniyami”, Fundament. i prikl. mat., 11:3 (2005), 139–154 | MR

[5] Cechlarova K., “Powers of matrices over distributive lattices – a review”, Fuzzy Sets and Systems, 138 (2003), 627–641 | DOI | MR | Zbl

[6] Duca I., Duca M., “La resolution des equations matricielles boolennes”, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 61:1-2 (1999), 81–9 | MR

[7] Kim K. H., Boolean Matrix Theory and Its Applications, Marcel Dekker, New York, 1982 | MR | Zbl

[8] Kirkland S., Pullman N. J., “Boolean spectral theory”, Linear Algebra Appl., 175 (1992), 177–190 | DOI | MR | Zbl

[9] Liguori F., Martini G., Sessa S., “Idempotent and compact matrices on linear lattices: A survey of some lattice results and related solutions of finite relation equations”, Internat. J. Math. Math. Sci., 16:2 (1993), 301–310 | DOI | MR

[10] Luce R. D., “A note on Boolean matrix theory”, Proc. Amer. Math. Soc., 3:2 (1952), 382–388 | DOI | MR | Zbl

[11] Song S. Z., Kang K. T., “Types and enumeration of idempotent matrices”, Far East J. Math. Sci., 3 (2001), 1029–1042 | MR | Zbl

[12] Szpilrajn E., “Sur l'extension de l'ordre partiel”, Fund. Math., 16 (1930), 386–389 | Zbl

[13] Tan Y.-J., “On the powers of matrices over a distributive lattice”, Linear Algebra Appl., 336 (2001), 1–14 | DOI | MR | Zbl

[14] Zhao C. K., “Inverse of $L$-fuzzy matrices”, Fuzzy Sets and Systems, 34 (1990), 103–116 | DOI | MR | Zbl

[15] Zhmuely Z., “The lattice of idempotent binary relation”, Algebra Universalis, 9 (1979), 297–304 | DOI | MR