@article{FPM_2007_13_4_a2,
author = {M. A. Efimov},
title = {Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {53--66},
year = {2007},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/}
}
TY - JOUR
AU - M. A. Efimov
TI - Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 2007
SP - 53
EP - 66
VL - 13
IS - 4
UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/
LA - ru
ID - FPM_2007_13_4_a2
ER -
%0 Journal Article
%A M. A. Efimov
%T Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 53-66
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/
%G ru
%F FPM_2007_13_4_a2
M. A. Efimov. Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 53-66. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/
[1] Bogdanov I. I., Guterman A. E., “Monotonnye otobrazheniya matrits, zadannye gruppovoi obratnoi, i odnovremennaya diagonalizuemost”, Mat. sb., 198:1 (2007), 3–20 | MR | Zbl
[2] Baksalary J. K., Hauke J., “A further algebraic version of Cochran's theorem and matrix partial orderings”, Linear Algebra Appl., 127 (1990), 157–169 | DOI | MR | Zbl
[3] Baksalary J. K., Pukelsheim F., Styan G. P. H., “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl
[4] Ben-Israel A., Greville T., Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, 1974 | MR | Zbl
[5] Englefield M. J., “The commuting inverses of a square matrix”, Math. Proc. Cambridge Philos. Soc., 62 (1966), 667–671 | DOI | MR | Zbl
[6] Hartwig R. E., “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl
[7] Hartwig R. E., Mitra S. K., “Partial orders based on outer inverses”, Linear Algebra Appl., 176 (1982), 3–20 | MR
[8] Mitra S. K., “A new class of g-inverse of square matrices”, Sankhyā Ser. A, 30 (1968), 323–330 | MR | Zbl
[9] Mitra S. K., “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl
[10] Mitra S. K., “Matrix partial orders through generalized inverses: Unified theory”, Linear Algebra Appl., 148 (1991), 237–263 | DOI | MR | Zbl
[11] Nambooripad K. S. S., “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl
[12] Robert P., “On the group-inverse of a linear transformation”, J. Math. Anal. Appl., 22 (1968), 658–669 | DOI | MR | Zbl