Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 53-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize linear transformations on the matrix algebra over an arbitrary field with characteristic not equal to 2 that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order.
@article{FPM_2007_13_4_a2,
     author = {M. A. Efimov},
     title = {Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {53--66},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/}
}
TY  - JOUR
AU  - M. A. Efimov
TI  - Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 53
EP  - 66
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/
LA  - ru
ID  - FPM_2007_13_4_a2
ER  - 
%0 Journal Article
%A M. A. Efimov
%T Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 53-66
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/
%G ru
%F FPM_2007_13_4_a2
M. A. Efimov. Linear matrix transformations that are monotone with respect to the $\overset\sharp\leq$- or $\overset{\mathrm{cn}}\leq$-order. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 53-66. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a2/

[1] Bogdanov I. I., Guterman A. E., “Monotonnye otobrazheniya matrits, zadannye gruppovoi obratnoi, i odnovremennaya diagonalizuemost”, Mat. sb., 198:1 (2007), 3–20 | MR | Zbl

[2] Baksalary J. K., Hauke J., “A further algebraic version of Cochran's theorem and matrix partial orderings”, Linear Algebra Appl., 127 (1990), 157–169 | DOI | MR | Zbl

[3] Baksalary J. K., Pukelsheim F., Styan G. P. H., “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl

[4] Ben-Israel A., Greville T., Generalized Inverses: Theory and Applications, John Wiley and Sons, New York, 1974 | MR | Zbl

[5] Englefield M. J., “The commuting inverses of a square matrix”, Math. Proc. Cambridge Philos. Soc., 62 (1966), 667–671 | DOI | MR | Zbl

[6] Hartwig R. E., “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl

[7] Hartwig R. E., Mitra S. K., “Partial orders based on outer inverses”, Linear Algebra Appl., 176 (1982), 3–20 | MR

[8] Mitra S. K., “A new class of g-inverse of square matrices”, Sankhyā Ser. A, 30 (1968), 323–330 | MR | Zbl

[9] Mitra S. K., “On group inverses and the sharp order”, Linear Algebra Appl., 92 (1987), 17–37 | DOI | MR | Zbl

[10] Mitra S. K., “Matrix partial orders through generalized inverses: Unified theory”, Linear Algebra Appl., 148 (1991), 237–263 | DOI | MR | Zbl

[11] Nambooripad K. S. S., “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl

[12] Robert P., “On the group-inverse of a linear transformation”, J. Math. Anal. Appl., 22 (1968), 658–669 | DOI | MR | Zbl