Cyclic projectors and separation theorems in idempotent convex geometry
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 31-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Semimodules over idempotent semirings like the max-plus or tropical semiring have much in common with convex cones. This analogy is particularly apparent in the case of subsemimodules of the $n$-fold Cartesian product of the max-plus semiring: It is known that one can separate a vector from a closed subsemimodule that does not contain it. Here we establish a more general separation theorem, which applies to any finite collection of closed subsemimodules with a trivial intersection. The proof of this theorem involves specific nonlinear operators, called here cyclic projectors on idempotent semimodules. These are analogues of the cyclic nearest-point projections known in convex analysis. We obtain a theorem that characterizes the spectrum of cyclic projectors on idempotent semimodules in terms of a suitable extension of Hilbert's projective metric. We also deduce as a corollary of our main results the idempotent analogue of Helly's theorem.
@article{FPM_2007_13_4_a1,
     author = {S. Gaubert and S. N. Sergeev},
     title = {Cyclic projectors and separation theorems in idempotent convex geometry},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {31--52},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a1/}
}
TY  - JOUR
AU  - S. Gaubert
AU  - S. N. Sergeev
TI  - Cyclic projectors and separation theorems in idempotent convex geometry
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 31
EP  - 52
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a1/
LA  - ru
ID  - FPM_2007_13_4_a1
ER  - 
%0 Journal Article
%A S. Gaubert
%A S. N. Sergeev
%T Cyclic projectors and separation theorems in idempotent convex geometry
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 31-52
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a1/
%G ru
%F FPM_2007_13_4_a1
S. Gaubert; S. N. Sergeev. Cyclic projectors and separation theorems in idempotent convex geometry. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 4, pp. 31-52. http://geodesic.mathdoc.fr/item/FPM_2007_13_4_a1/

[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[2] Litvinov G. L., Maslov V. P., Shpiz G. B., “Idempotentnyi funktsionalnyi analiz. Algebraicheskii podkhod”, Mat. zametki, 69:5 (2001), 758–797 ; arXiv: math.FA/0009128 | MR | Zbl

[3] Maslov V. P., Kolokoltsov V. N., Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Nauka, M., 1994 | MR

[4] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[5] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P., Synchronization and Linearity, Wiley, New York, 1992 | MR | Zbl

[6] Bauschke H. H., Borwein J. M., Lewis A. S., “The method of cyclic projections for closed convex sets in Hilbert space”, Recent Developments in Optimization Theory and Nonlinear Analysis, Contemporary Math., 204, eds. Y. Censor, S. Reich, Amer. Math. Soc., Providence, 1997, 1–42 | MR

[7] Blyth T. S., Janowitz M. F., Residuation Theory, Pergamon Press, 1972 | MR | Zbl

[8] Butkovič P., Schneider H., Sergeev S., “Generators, extremals and bases of max cones”, Linear Algebra Appl, 421 (2007), 394–406 ; arXiv: math.RA/0604454 | DOI | MR | Zbl

[9] Cohen G., Gaubert S., Quadrat J. P., “Duality and separation theorems in idempotent semimodules”, Linear Algebra Appl., 379 (2004), 395–422 ; arXiv: math.FA/0212294 | DOI | MR | Zbl

[10] Cohen G., Gaubert S., Quadrat J. P., Singer I., “Max-plus convex sets and functions”, Idempotent Mathematics and Mathematical Physics, Contemporary Math., 377, eds. G. Litvinov, V. Maslov, Amer. Math. Soc., Providence, 2005, 105–129 ; arXiv: math.FA/0308166 | MR | Zbl

[11] Cuninghame-Green R. A., “Projections in minimax algebra”, Math. Programmming, 10:1 (1976), 111–123 | DOI | MR | Zbl

[12] Cuninghame-Green R. A., Minimax Algebra, Lect. Notes Economics Math. Systems, 166, Springer, Berlin, 1979 | MR | Zbl

[13] Cuninghame-Green R. A., Butkovič P., “The equation $A\otimes x=B\otimes y$ over $(\max,+)$”, Theoret. Comput. Sci., 293 (2003), 3–12 | DOI | MR | Zbl

[14] Develin M., Sturmfels B., “Tropical convexity”, Doc. Math., 9 (2004), 1–27 ; arXiv: math.MG/0308254 | MR | Zbl

[15] Eggleston H. G., Convexity, Cambridge Univ. Press, Cambridge, 1958 | MR

[16] Golan J., Semirings and Their Applications, Kluwer, Dordrecht, 2000 | MR

[17] Gaubert S., Katz R., “The Minkowski theorem for max-plus convex sets”, Linear Algebra Appl., 421 (2007), 356–369 ; arXiv: math.GM/0605078 | DOI | MR | Zbl

[18] Gaubert S., Meunier F., Private commmunication, 2006

[19] Litvinov G., Maslov V. (eds.), Idempotent Mathematics and Mathematical Physics, Contemporary Math., 377, Amer. Math. Soc., Providence, 2005 | MR

[20] Litvinov G. L., “Maslov dequantization, idempotent and tropical mathematics: A brief introduction”, J. Math. Sci., 140:3 (2007), 426–444 | DOI | MR

[21] Nitica V., Singer I., “The structure of max-plus hyperplanes”, Linear Algebra Appl., 426 (2007), 382–414 | DOI | MR | Zbl

[22] Nussbaum R. D., “Convexity and log convexity for the spectral radius”, Linear Algebra Appl., 73 (1986), 59–122 | DOI | MR | Zbl

[23] Samborskiĭ S. N., Shpiz G. B., “Convex sets in the semimodule of bounded functions”, Idempotent Analysis, Adv. Sov. Math., 13, eds. V. P. Maslov, S. N. Samborskiĭ, Amer. Math. Soc., Providence, 1992, 135–137 | MR | Zbl

[24] Zimmermann K., “A general separation theorem in extremal algebras”, Ekonomicko-matematický obzor, 13:2 (1977), 179–201 | MR | Zbl