Rank-$1$ quotient divisible groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 25-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Abelian group is called quotient divisible if it does not contain nonzero torsion divisible subgroups, but does contain a free finite rank subgroup such that the quotient group by it is divisible. In this paper, we will describe rank $1$ quotient divisible groups with the help of cocharacteristics, and we will describe the endomorphisms of these groups as well.
@article{FPM_2007_13_3_a3,
     author = {O. I. Davydova},
     title = {Rank-$1$ quotient divisible groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {25--33},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a3/}
}
TY  - JOUR
AU  - O. I. Davydova
TI  - Rank-$1$ quotient divisible groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 25
EP  - 33
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a3/
LA  - ru
ID  - FPM_2007_13_3_a3
ER  - 
%0 Journal Article
%A O. I. Davydova
%T Rank-$1$ quotient divisible groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 25-33
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a3/
%G ru
%F FPM_2007_13_3_a3
O. I. Davydova. Rank-$1$ quotient divisible groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 25-33. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a3/

[1] Fuks L., Beskonechnye abelevy gruppy, T. 1, 2, Mir, M., 1974, 1977

[2] Beaumont R., Pierce R., “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl

[3] Fomin A. A., Wickless W., “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126 (1998), 45–52 | DOI | MR | Zbl