Rank-$1$ quotient divisible groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 25-33
Voir la notice de l'article provenant de la source Math-Net.Ru
An Abelian group is called quotient divisible if it does not contain nonzero torsion divisible subgroups, but does contain a free finite rank subgroup
such that the quotient group by it is divisible. In this paper, we will describe rank $1$ quotient divisible groups with the help of cocharacteristics, and we will describe the endomorphisms of these groups as well.
@article{FPM_2007_13_3_a3,
author = {O. I. Davydova},
title = {Rank-$1$ quotient divisible groups},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {25--33},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a3/}
}
O. I. Davydova. Rank-$1$ quotient divisible groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 25-33. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a3/