Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_3_a20, author = {A. A. Fomin}, title = {A~category of matrices representing two categories of {Abelian} groups}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {223--244}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a20/} }
A. A. Fomin. A~category of matrices representing two categories of Abelian groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 3, pp. 223-244. http://geodesic.mathdoc.fr/item/FPM_2007_13_3_a20/
[1] Maltsev A. I., “Abelevy gruppy konechnogo ranga bez krucheniya”, Mat. sb., 4 (1938), 45–68 | Zbl
[2] Fomin A. A., “Abelevy gruppy s odnim $\tau$-adicheskim otnosheniem”, Algebra i logika, 28 (1989), 83–104 | Zbl
[3] Fuks L., Beskonechnye abelevy gruppy, Mir, M., 1974, 1977
[4] Albrecht U., Goeters H. P., Wickless W., “The flat dimension of mixed Abelian groups as $E$-modules”, Rocky Mountain J. Math., 25 (1995), 569–590 | DOI | MR | Zbl
[5] Albrecht U., Hausen J., “Mixed Abelian groups with the summand intersection property”, Abelian Groups and Modules, Proc. Int. Conf. Colorado Springs (CO, USA, August 7–12, 1995), Lect. Notes Pure Appl. Math., 182, ed. D. M. Arnold, Marcel Dekker, New York, 1996, 123–132 | MR | Zbl
[6] Beaumont R., Pierce R., “Torsion-free rings”, Illinois J. Math., 5 (1961), 61–98 | MR | Zbl
[7] Derry D., “Über eine Klasse von abelschen Gruppen”, Proc. London Math. Soc., 43 (1937), 490–506 | DOI | Zbl
[8] Files S., Wickless W., “The Baer–Kaplansky theorem for a class of global mixed Abelian groups”, Rocky Mountain J. Math., 26 (1996), 593–613 | DOI | MR | Zbl
[9] Fomin A. A., “The category of quasi-homomorphisms of Abelian torsion free groups of finite rank”, Algebra, Proc. Int. Conf. Memory A. I. Mal'cev, Pt. 1 (Novosibirsk, USSR, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, 1992, 91–111 | MR
[10] Fomin A. A., “Finitely presented modules over the ring of universal numbers”, Abelian Group Theory and Related Topics, Conf. (August 1–7, 1993, Oberwolfach, Germany), Contemp. Math., 171, ed. R. Göbel, Amer. Math. Soc., Providence, 1994, 109–120 | MR | Zbl
[11] Fomin A. A., “Some mixed Abelian groups as modules over the ring of pseudo-rational numbers”, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser, Basel, 1999, 87–100 | MR | Zbl
[12] Fomin A. A., “Quotient divisible mixed groups”, Abelian Groups, Rings and Modules, Proc. AGRAM 2000 Conf. (Perth, Australia, July 9–15, 2000), Contemp. Math., 273, ed. A. V. Kelarev, Amer. Math. Soc., Providence, 2001, 117–128 | MR | Zbl
[13] Fomin A., Mutzbauer O., “Torsion-free Abelian $\alpha$-irreducible groups of finite rank”, Comm. Algebra, 22 (1994), 3741–3754 | DOI | MR | Zbl
[14] Fomin A. A., Wickless W. J. author={Fomin, Alexander A.},, “Categories of mixed and torsion-free finite rank abelian groups”, Abelian groups and modules,, Proc. Padova Conf. (Padova, Italy, June 23–July 1, 1994), Math. Appl., 343, ed. A. Facchini, Kluwer Acad. Publ., Dordrecht, 1995, 185–192 | MR | Zbl
[15] Fomin A. A., Wickless W., “Quotient divisible Abelian groups”, Proc. Amer. Math. Soc., 126 (1998), 45–52 | DOI | MR | Zbl
[16] Fomin A. A., Wickless W., “Self-small mixed Abelian groups $G$ with $G/T(G)$ finite rank divisible”, Comm. Algebra, 26 (1998), 3563–3580 | DOI | MR | Zbl
[17] Glaz S., Wickless W., “Regular and principal projective endomorphism rings of mixed Abelian groups”, Comm. Algebra, 22 (1994), 1161–1176 | DOI | MR | Zbl
[18] Jonsson B., “On direct decompositions of torsion-free Abelian groups”, Math. Scand., 7 (1957), 230–235 | MR
[19] Kurosh A. G., “Primitive torsionsfreie abelsche Gruppen vom endlichen Range”, Ann. Math., 38 (1937), 175–203 | DOI | MR | Zbl
[20] Pontryagin L. S., “The theory of topological commutative groups”, Ann. Math., 35 (1934), 361–388 | DOI | MR | Zbl
[21] Wickless W. J., “A functor from mixed groups to torsion-free groups”, Abelian Group Theory and Related Topics, Conf. (August 1–7, 1993, Oberwolfach, Germany), Contemp. Math., 171, ed. R. Göbel, Amer. Math. Soc., Providence, 1994, 407–417 | MR | Zbl