Representations of semimodules by sections of sheaves
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 195-204

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the paper is to study the conditions on the subsemimodule $A_S$ of the semimodule $\Gamma(P)$ of all global sections of a sheaf $P$ implying $A_S=\Gamma(P)$. Some applications of the developed construction are shown: namely, the Lambek representations for semimodules over strongly harmonic and reduced Rickart semirings as well as Pierce representations for semimodules over arbitrary semirings were proved to be isomorphic.
@article{FPM_2007_13_2_a8,
     author = {V. V. Chermnykh},
     title = {Representations of semimodules by sections of sheaves},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {195--204},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a8/}
}
TY  - JOUR
AU  - V. V. Chermnykh
TI  - Representations of semimodules by sections of sheaves
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 195
EP  - 204
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a8/
LA  - ru
ID  - FPM_2007_13_2_a8
ER  - 
%0 Journal Article
%A V. V. Chermnykh
%T Representations of semimodules by sections of sheaves
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 195-204
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a8/
%G ru
%F FPM_2007_13_2_a8
V. V. Chermnykh. Representations of semimodules by sections of sheaves. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 195-204. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a8/