Equilibrium and Pareto-optimality in noisy discrete duels with an arbitrary number of actions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 147-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonzero-sum game of two players that is a generalization of the antagonistic noisy duel of discrete type. The game is considered from the point of view of various criteria of optimality. We prove the existence of $\varepsilon$-equilibrium situations and show that the $\varepsilon$-equilibrium strategies that we found are $\varepsilon$-maxmin. Conditions under which the equilibrium plays are Pareto-optimal are given.
@article{FPM_2007_13_2_a5,
     author = {L. N. Positselskaya},
     title = {Equilibrium and {Pareto-optimality} in noisy discrete duels with an arbitrary number of actions},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {147--155},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a5/}
}
TY  - JOUR
AU  - L. N. Positselskaya
TI  - Equilibrium and Pareto-optimality in noisy discrete duels with an arbitrary number of actions
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 147
EP  - 155
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a5/
LA  - ru
ID  - FPM_2007_13_2_a5
ER  - 
%0 Journal Article
%A L. N. Positselskaya
%T Equilibrium and Pareto-optimality in noisy discrete duels with an arbitrary number of actions
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 147-155
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a5/
%G ru
%F FPM_2007_13_2_a5
L. N. Positselskaya. Equilibrium and Pareto-optimality in noisy discrete duels with an arbitrary number of actions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 147-155. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a5/

[1] Davydov E. G., Positselskaya L. N., Shumnye dueli, VTs AN SSSR, M., 1982

[2] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Mir, M., 1964

[3] Positselskaya L. N., “Ob odnoi zadache raspredeleniya resursov”, Dinamika neodnorodnykh sistem, VNIISI, M., 1983, 260–266

[4] Positselskaya L. N., “Duel kak model konkurentsii i katastrofy”, Matematika. Modelirovanie. Ekologiya, Tr. IV Mezhdunar. konf. zhenschin-matematikov, t. 4, vyp. 1, Nizhnii Novgorod, 1997, 111–119

[5] Positselskaya L. N., “Shumnaya duel smeshannogo tipa s nenulevoi summoi”, Tr. VI Mezhdunar. konf. zhenschin-matematikov, t. 6, vyp. 1, Nizhnii Novgorod, 1999, 77–85 | MR

[6] Positselskaya L. N., “Shumnaya duel diskretnogo tipa s nenulevoi summoi”, Tr. Ross. assotsiatsii “Zhenschiny-matematiki”, t. 8, vyp. 1, Nizhnii Novgorod, 2001, 47–52 | MR

[7] Positselskaya L. N., “Ravnovesie i Pareto-optimalnost v shumnoi dueli diskretnogo tipa s nenulevoi summoi”, Fundament. i prikl. mat., 8:4 (2002), 1111–1128 | MR | Zbl

[8] Positselskaya L. N., “Pareto-optimalnye partii duelei s nenulevoi summoi”, Tr. Ross. assotsiatsii “Zhenschiny-matematiki”, t. 12, Cheboksary, 2005, 182–188

[9] Fox M., “Duels with possibly assymetric goals”, Applicationes Mathematicae, 17:1 (1980), 15–25 | MR | Zbl

[10] Fox M., Kimeldorf G. S., “Noisy duels”, SIAM J. Appl. Math., 17 (1969), 353–361 | DOI | MR | Zbl

[11] Kimeldorf G., “Duels: An overview”, Mathematics of Conflict, North-Holland, 1983, 55–71 | MR | Zbl

[12] Radzik T., “General noisy duels”, Math. Japon., 36:5 (1991), 827–857 | MR | Zbl