Dynamic construction of abstract Voronoi diagrams
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 133-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The abstract Voronoi diagram (AVD) introduced by R. Klein is a generalization of various concrete Voronoi diagrams—data structures actively used in the last decades for solving theoretical and practical geometric problems. This paper presents a fully dynamic algorithm for AVD construction based on Klein's incremental approach. It needs $O(n)$ worst\df case time for a new site insertion in an AVD with $n$ sites. For the first time a possibility of effective site deletion without full reconstruction of AVD is proved. The proposed method for site deletion requires $O(mn)$ expected time where $m$ is the number of invisible sites, and $O(n)$ if invisible sites are not allowed. The dynamic algorithm consumes $O(n)$ memory at any moment.
@article{FPM_2007_13_2_a4,
     author = {K. K. Malinauskas},
     title = {Dynamic construction of abstract {Voronoi} diagrams},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {133--146},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a4/}
}
TY  - JOUR
AU  - K. K. Malinauskas
TI  - Dynamic construction of abstract Voronoi diagrams
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 133
EP  - 146
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a4/
LA  - ru
ID  - FPM_2007_13_2_a4
ER  - 
%0 Journal Article
%A K. K. Malinauskas
%T Dynamic construction of abstract Voronoi diagrams
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 133-146
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a4/
%G ru
%F FPM_2007_13_2_a4
K. K. Malinauskas. Dynamic construction of abstract Voronoi diagrams. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 133-146. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a4/

[7] Kelli Dzh., Obschaya topologiya, Nauka, M., 1981 | MR

[8] Malinauskas K. K., Marchenko A. M., “Primenenie diagramm Voronogo dlya otsenki kachestva trassirovki v zadache razmescheniya modulei SBIS”, Tr. Mezhdunar. nauch.-tekhn. konferentsii “Intellektualnye sistemy” (IEEE AIS'03) i “Intellektualnye SAPR” (CAD-2003), t. 2, Izd-vo fiz.-mat. lit., M., 2003, 70–74

[9] Aurenhammer F., “Voronoi diagrams: A survey of a fundamental geometric data structure”, ACM Comput. Surveys, 23 (1991), 345–405 | DOI

[10] Guibas L., Stofli J., “Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams”, ACM Trans. Graphics, 4:2 (1985), 74–123 | DOI | Zbl

[11] Klein R., “Abstract Voronoi diagrams and their applications (extended abstract)”, Proc. of the Workshop on Computational Geometry and Its Applications (Würzburg, 1988), Lect. Notes Comput. Sci., 333, ed. H. Noltemeier, Springer, 1988, 148–157 | MR

[12] Klein R., Concrete and Abstract Voronoi Diagrams, Lect. Notes Comput. Sci., 400, Springer, Berlin, 1989 | MR | Zbl

[13] Klein R., Mehlhorn K., Meiser S., “Randomized incremental construction of abstract Voronoi diagrams”, Comput. Geom., 3 (1993), 157–184 | DOI | MR | Zbl

[14] Papadopoulou E., Lee D. T., “The $L_\infty$ Voronoi diagram of segments and VLSI applications”, Internat. J. Comput. Geom. Appl., 11 (2001), 503–528 | DOI | MR | Zbl