The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 3-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to relations between the Kurosh problem and the Shirshov height theorem. The central point and main technical tool is the identity of algebraicity. The main result of this paper is the following. Let $A$ be a finitely generated PI-algebra and $Y$ be a finite subset of $A$. For any Noetherian associative and commutative ring $R\supset\mathbb F$, let any factor of $R\otimes A$ such that all projections of elements from $Y$ are algebraic over $\pi(R)$ be a Noetherian $R$-module. Then $A$ has bounded essential height over $Y$. If, furthermore, $Y$ generates $A$ as an algebra, then $A$ has bounded height over $Y$ in the Shirshov sense. The paper also contains a new proof of the Razmyslov–Kemer–Braun theorem on radical nilpotence of affine PI-algebras. This proof allows one to obtain some constructive estimates. The main goal of the paper is to develope a “virtual operator calculus.” Virtual operators (pasting, deleting and transfer) depend not only on an element of the algebra but also on its representation.
@article{FPM_2007_13_2_a0,
     author = {A. Ya. Belov},
     title = {The {Kurosh} problem, height theorem, nilpotency of the radical, and algebraicity identity},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--29},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/}
}
TY  - JOUR
AU  - A. Ya. Belov
TI  - The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 3
EP  - 29
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/
LA  - ru
ID  - FPM_2007_13_2_a0
ER  - 
%0 Journal Article
%A A. Ya. Belov
%T The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 3-29
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/
%G ru
%F FPM_2007_13_2_a0
A. Ya. Belov. The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 3-29. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/

[1] Belov A. Ya., “O bazise Shirshova otnositelno svobodnykh algebr slozhnosti $n$”, Mat. sb., 135:3 (1988), 373–384 | Zbl

[2] Belov A. Ya., Borisenko V. V., Latyshev V. N., “Monomialnye algebry”, Itogi nauki i tekhn. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 26, VINITI, M., 2002, 35–214

[3] Dnestrovskaya tetrad, 4-e izd., Izd. In-ta matem. SO AN SSSR, Novosibirsk, 1993

[4] Zubrilin K. A., “Algebry, udovletvoryayuschie tozhdestvam Kapelli”, Mat. sb., 186:3 (1995), 53–64 | MR | Zbl

[5] Zubrilin K. A., “O klasse nilpotentnosti prepyatstviya dlya predstavimosti algebr, udovletvoryayuschikh tozhdestvam Kapelli”, Fundament. i prikl. mat., 1:2 (1995), 409–430 | MR

[6] Kemer A. R., Nematrichnye mnogoobraziya, mnogoobraziya so stepennym rostom i konechno porozhdennye PI-algebry, Dis. ... kand. fiz.-mat. nauk, Novosibirsk, 1981

[7] Kurosh A. G., “Problemy teorii kolets, svyazannye s problemoi Bernsaida o periodicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 5 (1941), 233–240 | MR | Zbl

[8] Latyshev V. N., Nematrichnye mnogoobraziya assotsiativnykh algebr, Dis. ... dokt. fiz.-mat. nauk, M., 1977

[9] Mischenko S. P., “Variant teoremy o vysote dlya algebr Li”, Mat. zametki, 47:4 (1990), 83–89 | MR

[10] Pchelintsev S. V., “Teorema o vysote dlya alternativnykh algebr”, Mat. sb., 124:4 (1984), 557–567 | MR | Zbl

[11] Razmyslov Yu. P., “Algebry, udovletvoryayuschie tozhdestvennym sootnosheniyam tipa Kapelli”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 143–166 | MR | Zbl

[12] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989

[13] Ufnarovskii V. A., “Teorema o nezavisimosti i ee sledstviya”, Mat. sb., 128:1 (1985), 124–132 | MR

[14] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177

[15] Chekanu G. P., “K teoreme Shirshova o vysote”, XIX Vsesoyuzn. algebr. konf.: Tezisy soobsch. I, Lvov, 1987, 306

[16] Chekanu G. P., “O lokalnoi konechnosti algebr”, Mat. issledovaniya, 1988, no. 105, 153–171

[17] Shirshov A. I., “O nekotorykh neassotsiativnykh nil-koltsakh i algebraicheskikh algebrakh”, Mat. sb., 41:3 (1957), 381–394 | MR | Zbl

[18] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sb., 43:2 (1957), 277–283 | MR | Zbl

[19] Amitsur S., “A generalization of Hilbert's Nullstellensatz”, Proc. Amer. Math. Soc., 8:4 (1957), 649–656 | DOI | MR | Zbl

[20] Braun A., “The radical in a finitely generated PI-algebra”, Bull. Amer. Math. Soc., 7:2 (1982), 385–386 | DOI | MR | Zbl