Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_2_a0, author = {A. Ya. Belov}, title = {The {Kurosh} problem, height theorem, nilpotency of the radical, and algebraicity identity}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {3--29}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/} }
TY - JOUR AU - A. Ya. Belov TI - The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 3 EP - 29 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/ LA - ru ID - FPM_2007_13_2_a0 ER -
A. Ya. Belov. The Kurosh problem, height theorem, nilpotency of the radical, and algebraicity identity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 2, pp. 3-29. http://geodesic.mathdoc.fr/item/FPM_2007_13_2_a0/
[1] Belov A. Ya., “O bazise Shirshova otnositelno svobodnykh algebr slozhnosti $n$”, Mat. sb., 135:3 (1988), 373–384 | Zbl
[2] Belov A. Ya., Borisenko V. V., Latyshev V. N., “Monomialnye algebry”, Itogi nauki i tekhn. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 26, VINITI, M., 2002, 35–214
[3] Dnestrovskaya tetrad, 4-e izd., Izd. In-ta matem. SO AN SSSR, Novosibirsk, 1993
[4] Zubrilin K. A., “Algebry, udovletvoryayuschie tozhdestvam Kapelli”, Mat. sb., 186:3 (1995), 53–64 | MR | Zbl
[5] Zubrilin K. A., “O klasse nilpotentnosti prepyatstviya dlya predstavimosti algebr, udovletvoryayuschikh tozhdestvam Kapelli”, Fundament. i prikl. mat., 1:2 (1995), 409–430 | MR
[6] Kemer A. R., Nematrichnye mnogoobraziya, mnogoobraziya so stepennym rostom i konechno porozhdennye PI-algebry, Dis. ... kand. fiz.-mat. nauk, Novosibirsk, 1981
[7] Kurosh A. G., “Problemy teorii kolets, svyazannye s problemoi Bernsaida o periodicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 5 (1941), 233–240 | MR | Zbl
[8] Latyshev V. N., Nematrichnye mnogoobraziya assotsiativnykh algebr, Dis. ... dokt. fiz.-mat. nauk, M., 1977
[9] Mischenko S. P., “Variant teoremy o vysote dlya algebr Li”, Mat. zametki, 47:4 (1990), 83–89 | MR
[10] Pchelintsev S. V., “Teorema o vysote dlya alternativnykh algebr”, Mat. sb., 124:4 (1984), 557–567 | MR | Zbl
[11] Razmyslov Yu. P., “Algebry, udovletvoryayuschie tozhdestvennym sootnosheniyam tipa Kapelli”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 143–166 | MR | Zbl
[12] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989
[13] Ufnarovskii V. A., “Teorema o nezavisimosti i ee sledstviya”, Mat. sb., 128:1 (1985), 124–132 | MR
[14] Ufnarovskii V. A., “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177
[15] Chekanu G. P., “K teoreme Shirshova o vysote”, XIX Vsesoyuzn. algebr. konf.: Tezisy soobsch. I, Lvov, 1987, 306
[16] Chekanu G. P., “O lokalnoi konechnosti algebr”, Mat. issledovaniya, 1988, no. 105, 153–171
[17] Shirshov A. I., “O nekotorykh neassotsiativnykh nil-koltsakh i algebraicheskikh algebrakh”, Mat. sb., 41:3 (1957), 381–394 | MR | Zbl
[18] Shirshov A. I., “O koltsakh s tozhdestvennymi sootnosheniyami”, Mat. sb., 43:2 (1957), 277–283 | MR | Zbl
[19] Amitsur S., “A generalization of Hilbert's Nullstellensatz”, Proc. Amer. Math. Soc., 8:4 (1957), 649–656 | DOI | MR | Zbl
[20] Braun A., “The radical in a finitely generated PI-algebra”, Bull. Amer. Math. Soc., 7:2 (1982), 385–386 | DOI | MR | Zbl