Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_1_a8, author = {V. M. Levchuk and O. A. Starikova}, title = {A~normal form and schemes of quadratic forms}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {161--178}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a8/} }
V. M. Levchuk; O. A. Starikova. A~normal form and schemes of quadratic forms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 161-178. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a8/
[1] Avtomorfizmy klassicheskikh grupp, ed. Yu. I. Merzlyakova, Mir, M., 1976
[2] Artin E., Geometricheskaya algebra, Nauka, M., 1969
[3] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966
[4] Van der Varden B. L., Algebra, Nauka, M., 1979
[5] Vishnevskii V. V., Rozenfeld B. A., Shirokov A. P., “O razvitii geometrii prostranstv nad algebrami”, Izv. vyssh. uchebn. zaved., 1984, no. 7, 38–44
[6] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazanskogo un-ta, Kazan, 1985
[7] Kassels D., Ratsionalnye kvadratichnye formy, Mir, M., 1982
[8] Levchuk V. M., Starikova O. A., “Kvadriki i simmetricheskie formy modulei nad lokalnym koltsom glavnykh idealov”, Mezhdunar. algebr. konf. (tezisy dokl.), M., 2004
[9] Levchuk V. M., Starikova O. A., “Kvadratichnye formy proektivnykh prostranstv nad koltsami”, Mat. sb., 197:6 (2006), 97–110 | MR | Zbl
[10] Milnor Dzh., Khyuzmoller D., Simmetricheskie bilineinye formy, Nauka, M., 1986
[11] Starikova O. A., “Perechislenie kvadrik proektivnykh ploskostei i prostranstv nad lokalnymi koltsami glavnykh idealov”, Algebra i teoriya modelei, vyp. 4, NGTU, Novosibirsk, 2003, 110–115
[12] Starikova O. A., Perechislenie kvadrik i simmetrichnykh form modulei nad lokalnymi koltsami, Dis. ... kand. fiz.-mat. nauk, Severnyi mezhdunarodnyi universitet, Magadan, 2004
[13] Baeza R., Quadratic Forms over Semilocal Rings, Lect. Notes Math., 655, Springer, Berlin, 1978 | MR | Zbl
[14] Baeza R., “On the classification of quadratic forms over semilocal rings”, Bull. Soc. Math. France, Suppl., Mém., 59 (1979), 7–10, Colloque sur les Formes Quadratiques II (Montpellier, 1977) | MR | Zbl
[15] Baeza R., “The norm theorem for quadratic forms over a field of characteristic 2”, Comm. Algebra, 18:5 (1990), 1337–1348 | DOI | MR | Zbl
[16] Becher K. J., “On the number of square classes of a field of finite level”, Documenta Math. Extra Volume, Quadratic forms LSU, 2001, 65–84 | MR | Zbl
[17] Becher K. J., Hoffmann D. W., “Symbol lengths in Milnor $K$-theory”, Homology Homotopy Appl., 6:1 (2004), 17–31 | MR | Zbl
[18] Benz W., Vorlesungen über Geometrie der Algebren, Springer, Berlin, 1973 | MR
[19] Colliot-Thelene J.-L., “Formes quadratiques sur les anneaux semi-locaux reguliers”, Bull. Soc. Math. France, Suppl., Mém., 59 (1979), 13–31, Colloque sur les Formes Quadratiques II (Montpellier, 1977) | MR | Zbl
[20] Corduneanu A., “An elementary proof of the inertial law for real quadratic forms”, Gaz. Mat., Ser. Inf. Stiint. Perfect. Metod, 15:1 (1997), 41–46 | Zbl
[21] Estes D. R., Guralnick R. M., “A stable range for quadratic forms over commutative rings”, J. Pure Appl. Algebra, 120:3 (1997), 255–280 | DOI | MR | Zbl
[22] Honix E. A., “Totally indefinite quadratic forms over formally real fields”, Indag. Math., 47:3 (1985), 305–312 | MR
[23] Kula M., “Fields and quadratic form schemes”, Ann. Math. Sil., 1(13) (1985), 7–22 | MR | Zbl
[24] Kula M., “Counting Witt rings”, J. Algebra, 206:2 (1998), 568–587 | DOI | MR | Zbl
[25] Lam T. Y., The Algebraic Theory of Quadratic Forms, Benjamin/Cummings Publ., Reading, 1980 | MR | Zbl
[26] Marshall M., “The elementary type conjecture in quadratic form theory”, Algebraic and Arithmetic Theory of Quadratic Forms, Proc. of the Int. Conf., Universidad de Talca (Talca and Pucon, Chile, December 11–18, 2002), Contemp. Math., 344, ed. R. Baeza, Amer. Math. Soc., Providence, 2004, 275–293 | MR | Zbl
[27] Ojanguren M., Sridharan R., “A note on the fundamental theorem of projective geometry”, Comment Math. Helv., 44 (1969), 310–315 | DOI | MR | Zbl
[28] Scharlau W., Quadratic and Hermitian Forms, Springer, Berlin, 1985 | MR
[29] Yucas J. L., “A classification theorem for quadratic forms over semilocal rings”, Ann. Math. Sil., 2:14 (1986), 7–12 | MR | Zbl