A~normal form and schemes of quadratic forms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 161-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a solution of the problem of the construction of a normal diagonal form for quadratic forms over a local principal ideal ring $R=2R$ with a QF-scheme of order 2. We give a combinatorial representation for the number of classes of projective congruence quadrics of the projective space over $R$ with nilpotent maximal ideal. For the projective planes, the enumeration of quadrics up to projective equivalence is given; we also consider the projective planes over rings with nonprincipal maximal ideal. We consider the normal form of quadratic forms over the field of $p$-adic numbers. The corresponding QF-schemes have order 4 or 8. Some open problems for QF-schemes are mentioned. The distinguished finite QF-schemes of local and elementary types (of arbitrarily large order) are realized as the QF-schemes of a field.
@article{FPM_2007_13_1_a8,
     author = {V. M. Levchuk and O. A. Starikova},
     title = {A~normal form and schemes of quadratic forms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {161--178},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a8/}
}
TY  - JOUR
AU  - V. M. Levchuk
AU  - O. A. Starikova
TI  - A~normal form and schemes of quadratic forms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 161
EP  - 178
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a8/
LA  - ru
ID  - FPM_2007_13_1_a8
ER  - 
%0 Journal Article
%A V. M. Levchuk
%A O. A. Starikova
%T A~normal form and schemes of quadratic forms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 161-178
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a8/
%G ru
%F FPM_2007_13_1_a8
V. M. Levchuk; O. A. Starikova. A~normal form and schemes of quadratic forms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 161-178. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a8/

[1] Avtomorfizmy klassicheskikh grupp, ed. Yu. I. Merzlyakova, Mir, M., 1976

[2] Artin E., Geometricheskaya algebra, Nauka, M., 1969

[3] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966

[4] Van der Varden B. L., Algebra, Nauka, M., 1979

[5] Vishnevskii V. V., Rozenfeld B. A., Shirokov A. P., “O razvitii geometrii prostranstv nad algebrami”, Izv. vyssh. uchebn. zaved., 1984, no. 7, 38–44

[6] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazanskogo un-ta, Kazan, 1985

[7] Kassels D., Ratsionalnye kvadratichnye formy, Mir, M., 1982

[8] Levchuk V. M., Starikova O. A., “Kvadriki i simmetricheskie formy modulei nad lokalnym koltsom glavnykh idealov”, Mezhdunar. algebr. konf. (tezisy dokl.), M., 2004

[9] Levchuk V. M., Starikova O. A., “Kvadratichnye formy proektivnykh prostranstv nad koltsami”, Mat. sb., 197:6 (2006), 97–110 | MR | Zbl

[10] Milnor Dzh., Khyuzmoller D., Simmetricheskie bilineinye formy, Nauka, M., 1986

[11] Starikova O. A., “Perechislenie kvadrik proektivnykh ploskostei i prostranstv nad lokalnymi koltsami glavnykh idealov”, Algebra i teoriya modelei, vyp. 4, NGTU, Novosibirsk, 2003, 110–115

[12] Starikova O. A., Perechislenie kvadrik i simmetrichnykh form modulei nad lokalnymi koltsami, Dis. ... kand. fiz.-mat. nauk, Severnyi mezhdunarodnyi universitet, Magadan, 2004

[13] Baeza R., Quadratic Forms over Semilocal Rings, Lect. Notes Math., 655, Springer, Berlin, 1978 | MR | Zbl

[14] Baeza R., “On the classification of quadratic forms over semilocal rings”, Bull. Soc. Math. France, Suppl., Mém., 59 (1979), 7–10, Colloque sur les Formes Quadratiques II (Montpellier, 1977) | MR | Zbl

[15] Baeza R., “The norm theorem for quadratic forms over a field of characteristic 2”, Comm. Algebra, 18:5 (1990), 1337–1348 | DOI | MR | Zbl

[16] Becher K. J., “On the number of square classes of a field of finite level”, Documenta Math. Extra Volume, Quadratic forms LSU, 2001, 65–84 | MR | Zbl

[17] Becher K. J., Hoffmann D. W., “Symbol lengths in Milnor $K$-theory”, Homology Homotopy Appl., 6:1 (2004), 17–31 | MR | Zbl

[18] Benz W., Vorlesungen über Geometrie der Algebren, Springer, Berlin, 1973 | MR

[19] Colliot-Thelene J.-L., “Formes quadratiques sur les anneaux semi-locaux reguliers”, Bull. Soc. Math. France, Suppl., Mém., 59 (1979), 13–31, Colloque sur les Formes Quadratiques II (Montpellier, 1977) | MR | Zbl

[20] Corduneanu A., “An elementary proof of the inertial law for real quadratic forms”, Gaz. Mat., Ser. Inf. Stiint. Perfect. Metod, 15:1 (1997), 41–46 | Zbl

[21] Estes D. R., Guralnick R. M., “A stable range for quadratic forms over commutative rings”, J. Pure Appl. Algebra, 120:3 (1997), 255–280 | DOI | MR | Zbl

[22] Honix E. A., “Totally indefinite quadratic forms over formally real fields”, Indag. Math., 47:3 (1985), 305–312 | MR

[23] Kula M., “Fields and quadratic form schemes”, Ann. Math. Sil., 1(13) (1985), 7–22 | MR | Zbl

[24] Kula M., “Counting Witt rings”, J. Algebra, 206:2 (1998), 568–587 | DOI | MR | Zbl

[25] Lam T. Y., The Algebraic Theory of Quadratic Forms, Benjamin/Cummings Publ., Reading, 1980 | MR | Zbl

[26] Marshall M., “The elementary type conjecture in quadratic form theory”, Algebraic and Arithmetic Theory of Quadratic Forms, Proc. of the Int. Conf., Universidad de Talca (Talca and Pucon, Chile, December 11–18, 2002), Contemp. Math., 344, ed. R. Baeza, Amer. Math. Soc., Providence, 2004, 275–293 | MR | Zbl

[27] Ojanguren M., Sridharan R., “A note on the fundamental theorem of projective geometry”, Comment Math. Helv., 44 (1969), 310–315 | DOI | MR | Zbl

[28] Scharlau W., Quadratic and Hermitian Forms, Springer, Berlin, 1985 | MR

[29] Yucas J. L., “A classification theorem for quadratic forms over semilocal rings”, Ann. Math. Sil., 2:14 (1986), 7–12 | MR | Zbl