Limit T-spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 135-159

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a field of prime characteristic $p$ and let $\mathbf V_p$ be the variety of associative algebras over $F$ without unity defined by the identities $[[x,y],z]=0$ and $x^4=0$ if $p=2$ and by the identities $[[x,y],z]=0$ and $x^p=0$ if $p>2$ (here $[x,y]=xy-yx$). Let $A/V_p$ be the free algebra of countable rank of the variety $\mathbf V_p$ and let $S$ be the T-space in $A/V_p$ generated by $x_1^2x_2^2\dots x_k^2+V_2$, where $k\in\mathbb N$ if $p=2$ and by $x_1^{\alpha_1}x_2^{\alpha_2}[x_1,x_2]\dots x_{2k?1}^{\alpha_{2k-1}}x_{2k}^{\alpha_{2k}}[x_{2k?1},x_{2k}]+V_p$, where $k\in\mathbb N$ and $\alpha_1,\dots,\alpha_{2k}\in\{0,p-1\}$ if $p>2$. As is known, $S$ is not finitely generated as a T-space. In the present paper, we prove that $S$ is a limit T-space, i.e., a maximal nonfinitely generated T-space. As a corollary, we have constructed a limit T-space in the free associative $F$-algebra without unity of countable rank.
@article{FPM_2007_13_1_a7,
     author = {E. A. Kireeva},
     title = {Limit {T-spaces}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--159},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/}
}
TY  - JOUR
AU  - E. A. Kireeva
TI  - Limit T-spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 135
EP  - 159
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/
LA  - ru
ID  - FPM_2007_13_1_a7
ER  - 
%0 Journal Article
%A E. A. Kireeva
%T Limit T-spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 135-159
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/
%G ru
%F FPM_2007_13_1_a7
E. A. Kireeva. Limit T-spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 135-159. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/