Limit T-spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 135-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a field of prime characteristic $p$ and let $\mathbf V_p$ be the variety of associative algebras over $F$ without unity defined by the identities $[[x,y],z]=0$ and $x^4=0$ if $p=2$ and by the identities $[[x,y],z]=0$ and $x^p=0$ if $p>2$ (here $[x,y]=xy-yx$). Let $A/V_p$ be the free algebra of countable rank of the variety $\mathbf V_p$ and let $S$ be the T-space in $A/V_p$ generated by $x_1^2x_2^2\dots x_k^2+V_2$, where $k\in\mathbb N$ if $p=2$ and by $x_1^{\alpha_1}x_2^{\alpha_2}[x_1,x_2]\dots x_{2k?1}^{\alpha_{2k-1}}x_{2k}^{\alpha_{2k}}[x_{2k?1},x_{2k}]+V_p$, where $k\in\mathbb N$ and $\alpha_1,\dots,\alpha_{2k}\in\{0,p-1\}$ if $p>2$. As is known, $S$ is not finitely generated as a T-space. In the present paper, we prove that $S$ is a limit T-space, i.e., a maximal nonfinitely generated T-space. As a corollary, we have constructed a limit T-space in the free associative $F$-algebra without unity of countable rank.
@article{FPM_2007_13_1_a7,
     author = {E. A. Kireeva},
     title = {Limit {T-spaces}},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {135--159},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/}
}
TY  - JOUR
AU  - E. A. Kireeva
TI  - Limit T-spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 135
EP  - 159
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/
LA  - ru
ID  - FPM_2007_13_1_a7
ER  - 
%0 Journal Article
%A E. A. Kireeva
%T Limit T-spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 135-159
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/
%G ru
%F FPM_2007_13_1_a7
E. A. Kireeva. Limit T-spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 135-159. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a7/

[1] Aladova E. V., “Nekonechnobaziruemaya sistema tozhdestv v nilalgebrakh nad polem kharakteristiki 3”, Chebyshëvskii sb., 5:1(3) (2004), 5–19 | MR

[2] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestva”, Sovr. probl. matematiki. Fundamentalnye napravleniya, 18, VINITI, M., 1988, 117–240 | MR | Zbl

[3] Belov A. Ya., “O neshpekhtovykh mnogoobraziyakh”, Fundament. i prikl. mat., 5:1 (1999), 47–66 | MR | Zbl

[4] Belov A. Ya., “Kontrprimery k probleme Shpekhta”, Mat. sb., 191:3 (2000), 13–24 | MR | Zbl

[5] Grishin A. V., “O konechnoi baziruemosti sistem obobsch\"ennykh mnogochlenov”, Izv. AN SSSR. Ser. mat., 54:5 (1990), 899–927 | MR | Zbl

[6] Grishin A. V., “Primery ne konechnoi baziruemosti T-prostranstv i T-idealov v kharakteristike 2”, Fundament. i prikl. mat., 5:1 (1999), 101–118 | MR | Zbl

[7] Kemer A. R., “Konechnaya baziruemost tozhdestv assotsiativnykh algebr”, Algebra i logika, 26 (1987), 597–641 | MR | Zbl | Zbl

[8] Kireeva E. A., “O konechnoi porozhd\"ennosti vpolne invariantnykh podmodulei v nekotorykh otnositelno svobodnykh assotsiativnykh algebrakh”, Nauchnye trudy matematicheskogo fakulteta MPGU, Prometei, M., 2000, 269–276 | MR

[9] Kireeva E. A., Krasilnikov A. N., “O nekotorykh ekstremalnykh mnogoobraziyakh assotsiativnykh algebr”, Mat. zametki, 78:4 (2005), 542–558 | MR | Zbl

[10] Latyshev V. N., “O vybore bazy v odnom T-ideale”, Sib. mat. zhurn., 4:5 (1963), 1122–1127 | MR | Zbl

[11] Chiripov P. Zh., Siderov P. N., “O bazisakh tozhdestv nekotorykh mnogoobrazii assotsiativnykh algebr”, Pliska, 2 (1981), 103–115 | MR | Zbl

[12] Schigolev V. V., “Primery beskonechno baziruemykh T-idealov”, Fundament. i prikl. mat., 5:1 (1999), 307–312 | MR | Zbl

[13] Schigolev V. V., “Primery beskonechno baziruemykh T-prostranstv”, Mat. sb., 191:3 (2000), 143–160 | MR | Zbl

[14] Schigolev V. V., Beskonechno baziruemye T-prostranstva i T-idealy, Dis. ... kand. fiz.-mat. nauk, M., 2002

[15] Grishin A. V., “On non-Spechtianness of the variety of associative rings that satisfy the identity $x^{32}=0$”, Electron. Res. Announc. Amer. Math. Soc., 2000, no. 6, 50–51 | DOI | MR | Zbl

[16] Gupta C. K., Krasilnikov A. N., “A non-finitely based system of polynomial identities which contains the identity $x^6=0$”, Quart. J. Math., 53 (2002), 173–183 | DOI | MR | Zbl

[17] Drensky V. S., Free Algebras and PI-Algebras, Springer Singapore, Singapore, 2000 | MR | Zbl

[18] Rowen L. H., Ring Theory, Academic Press, Boston, 1991 | MR | Zbl

[19] Specht W., “Gesetze in Ringen”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[20] Shchigolev V. V., “Construction of non-finitely based T-ideals”, Comm. Algebra, 29:9 (2001), 3935–3942 | DOI | MR | Zbl