Multiplicative orders on terms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring with identity. Any order on terms of the polynomial algebra $R[x_1,\dots,x_k]$ induces in a natural way the notion of a leading term. An order on terms is called multiplicative if and only if the leading term of a product equals the product of leading terms. In this paper, we present a procedure for the construction of multiplicative orders. We obtain some characterizations of rings for which such orders exist. We give conditions sufficient for the existence of such orders.
@article{FPM_2007_13_1_a5,
     author = {E. V. Gorbatov},
     title = {Multiplicative orders on terms},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--107},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a5/}
}
TY  - JOUR
AU  - E. V. Gorbatov
TI  - Multiplicative orders on terms
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 101
EP  - 107
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a5/
LA  - ru
ID  - FPM_2007_13_1_a5
ER  - 
%0 Journal Article
%A E. V. Gorbatov
%T Multiplicative orders on terms
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 101-107
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a5/
%G ru
%F FPM_2007_13_1_a5
E. V. Gorbatov. Multiplicative orders on terms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 101-107. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a5/

[1] Gorbatov E. V., “Standartnye bazisy, soglasovannye s normirovaniem, i vychisleniya v idealakh i polilineinykh rekurrentakh”, Fundament. i prikl. mat., 10:3 (2004), 23–71 | MR | Zbl

[2] Gorbatov E. V., “Standartnyi bazis polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskret. mat., 16:1 (2004), 52–78 | MR | Zbl

[3] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy, Mir, M., 2000

[4] Nechaev A. A., “Lineinye rekurrentnye posledovatelnosti nad kommutativnymi koltsami”, Diskret. mat., 3:4 (1991), 105–127 | MR | Zbl

[5] Nechaev A. A., Mikhailov D. A., “Kanonicheskaya sistema obrazuyuschikh unitarnogo polinomialnogo ideala nad kommutativnym artinovym tsepnym koltsom”, Diskret. mat., 13:4 (2001), 3–42 | MR | Zbl

[6] Nechaev A. A., Mikhailov D. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskret. mat., 16:1 (2004), 21–51 | MR | Zbl

[7] Adams W., Loustaunau P., An Introduction to Gröbner Bases, Grad. Stud. Math., 3, Amer. Math. Soc., 1994 | MR | Zbl