The nonlinear diffusion equation in cylindrical coordinates
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 235-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear corrections to some classical solutions of the linear diffusion equation in cylindrical coordinates are studied within quadratic approximation. When cylindrical coordinates are used, we try to find a nonlinear correction using quadratic polynomials of Bessel functions whose coefficients are Laurent polynomials of radius. This usual perturbation technique inevitably leads to a series of overdetermined systems of linear algebraic equations for the unknown coefficients (in contrast with the Cartesian coordinates). Using a computer algebra system we show that all these overdetermined systems become compatible if we formally add one function on radius $W(r)$. Solutions can be constructed as linear combinations of these quadratic polynomials of the Bessel functions and the functions $W(r)$ and $W'(r)$. This gives a series of solutions to the nonlinear diffusion equation; these are found with the same accuracy as the equation is derived.
@article{FPM_2007_13_1_a14,
     author = {A. M. Shermenev},
     title = {The nonlinear diffusion equation in cylindrical coordinates},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {235--245},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a14/}
}
TY  - JOUR
AU  - A. M. Shermenev
TI  - The nonlinear diffusion equation in cylindrical coordinates
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 235
EP  - 245
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a14/
LA  - ru
ID  - FPM_2007_13_1_a14
ER  - 
%0 Journal Article
%A A. M. Shermenev
%T The nonlinear diffusion equation in cylindrical coordinates
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 235-245
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a14/
%G ru
%F FPM_2007_13_1_a14
A. M. Shermenev. The nonlinear diffusion equation in cylindrical coordinates. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 235-245. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a14/

[1] Courant R., Hilbert D., Methods of Mathematical Physics, Wiley, New York, 1989 | MR | Zbl | Zbl

[2] Crank J., The Mathematics of Diffusion, Oxford Univ. Press, Oxford, 1975 | MR

[3] Morse P. M., Feshbach H., Methods of Theoretical Physics, McGraw-Hill, New York, 1953 | MR | Zbl

[4] Shermenev A., “Nonlinear periodic waves on a beach”, Geophys. Astrophys. Fluid Dynam., 94:1–2 (2001), 1–14 | DOI | MR

[5] Shermenev A., “Nonlinear acoustic waves in tubes”, Acta Acust., 89 (2003), 426–429

[6] Shermenev A., “Nonlinear periodic waves in shallow water”, Symbolic and Numerical Scientific Computation, Second Int. Conf., SNSC 2001, Revised papers (Hagenberg, Austria, September 12–14, 2001), Lect. Notes Comput. Sci., 2630, ed. F. Winkler, Springer, Berlin, 2003, 375–386 | MR | Zbl

[7] Shermenev A., “Separation of variables for nonlinear wave equation in polar coordinates”, J. Phys. A, 37:45 (2004), 10983–10991 | DOI | MR | Zbl

[8] Shermenev A., “Nonlinear waves in a rod”, Computer Algebra in Scientific Computing, 8th Int. Workshop, CASC 2005, Proceedings (Kalamata, Greece, September 12–16, 2005), Lect. Notes Comput. Sci., 3718, ed. V. G. Ganzha, Springer, Berlin, 2005, 379–386 | MR | Zbl

[9] Shermenev A., “Separation of variables for the nonlinear wave equation in cylindrical coordinates”, Physica D, 212:3–4 (2005), 205–215 | DOI | MR | Zbl

[10] Shermenev A., Shermeneva M., “Long periodic waves on an even beach”, Phys. Rev. E, 61:5 (2000), 6000–6002 | DOI | MR