The ideal of separants in the ring of differential polynomials
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 215-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtained the criterion of existence of a quasi-liner polynomial in a differential ideal in the ordinary ring of differential polynomials over a field of characteristic zero. We generalized the “going up” and “going down” theorems onto the case of Ritt algebras. In particular, new finiteness criteria for differential standard bases and estimates that characterize calculation complexity were obtained.
@article{FPM_2007_13_1_a12,
     author = {D. V. Trushin},
     title = {The ideal of separants in the ring of differential polynomials},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {215--227},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a12/}
}
TY  - JOUR
AU  - D. V. Trushin
TI  - The ideal of separants in the ring of differential polynomials
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 215
EP  - 227
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a12/
LA  - ru
ID  - FPM_2007_13_1_a12
ER  - 
%0 Journal Article
%A D. V. Trushin
%T The ideal of separants in the ring of differential polynomials
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 215-227
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a12/
%G ru
%F FPM_2007_13_1_a12
D. V. Trushin. The ideal of separants in the ring of differential polynomials. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 215-227. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a12/

[1] Atya M., Makdonald I., Vvedenie v kommutativnuyu algebru, Faktorial Press, M., 2003

[2] Kaplanskii I., Vvedenie v differentsialnuyu algebru, Mir, M., 1959

[3] Carrà Ferro G., “Gröbner bases and differential algebra”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Proc. 5th Int. Conf., AAECC-5 (Menorca/Spain, 1987), Lect. Notes Comput. Sci., 356, Springer, Berlin, 1989, 129–140 | MR

[4] Carrà Ferro G., “Differential Gröbner bases in one variable and in the partial case”, Math. Comput. Modelling, 25:8–9 (1997), 1–10 | MR | Zbl

[5] Kolchin E. R., “On the exponents of differential ideals”, Ann. Math., 42:3 (1941), 740–777 | DOI | MR | Zbl

[6] Kolchin E. R., Differential Algebra and Algebraic Groups, Academic Press, 1973 | MR | Zbl

[7] Ollivier F., “Standard bases of differential ideals”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Tokyo/Jap., 1990), Lect. Notes Comput. Sci., 508, Springer, Berlin, 1991, 304–321 | MR

[8] Ritt J. F., Differential Algebra, Colloquium Publications, 33, Amer. Math. Soc., New York, 1950 | MR | Zbl

[9] Zobnin A., “Admissible orderings and finiteness criteria for differential standard bases”, Symbolic and Algebraic Computation, Int. Symp. ISSAC 2005, Proceedings (Beijing, China, July 24–27, 2005), ed. M. Kauers, ACM Press, 2005, 365–372 | MR | Zbl