On applying the Littlewood--Richardson rule
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 199-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We will consider the realization of the Littlewood–Richardson rule for the outer product of symmetric group characters using polynomial generating functions.
@article{FPM_2007_13_1_a11,
     author = {I. Yu. Sviridova},
     title = {On applying the {Littlewood--Richardson} rule},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {199--213},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a11/}
}
TY  - JOUR
AU  - I. Yu. Sviridova
TI  - On applying the Littlewood--Richardson rule
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 199
EP  - 213
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a11/
LA  - ru
ID  - FPM_2007_13_1_a11
ER  - 
%0 Journal Article
%A I. Yu. Sviridova
%T On applying the Littlewood--Richardson rule
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 199-213
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a11/
%G ru
%F FPM_2007_13_1_a11
I. Yu. Sviridova. On applying the Littlewood--Richardson rule. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 199-213. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a11/

[1] Dzheims G., Teoriya predstavlenii simmetricheskikh grupp, Mir, M., 1982 | MR | Zbl

[2] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR | Zbl

[3] Makdonald I., Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR | Zbl

[4] Amitsur S. A., Regev A., “P.I. algebras and their cocharacters”, J. Algebra, 78 (1982), 248–254 | DOI | MR | Zbl

[5] Berele A., Regev A., “Applications of hook Young diagrams to P.I. algebras”, J. Algebra, 82 (1983), 559–567 | DOI | MR | Zbl

[6] Berele A., Regev A., “Codimensions of products and of intersections of verbally prime T-ideals”, Israel J. Math., 103 (1998), 17–28 | DOI | MR | Zbl

[7] Drensky V., Free Algebras and PI-Algebras, Springer Singapore, Singapure, 2000 | MR | Zbl

[8] Drensky V., Genov G. K., “Multiplicities of Shur functions in invariants of two $3\times3$ matrices”, J. Algebra, 264 (2003), 496–519 | DOI | MR | Zbl

[9] Drensky V., Genov G. K., “Multiplicities of Shur functions with applications to invariant theory and PI-algebras”, C. R. Acad. Bulgare Sci., 57:3 (2004), 5–10 | MR | Zbl

[10] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Math. Surveys Monographs, 122, Amer. Math. Soc., Providence, 2005 | MR | Zbl

[11] Jacobson N., PI-Algebras: An Introductions, Lect. Notes Math., 441, Springer, Berlin, 1975 | DOI | MR | Zbl

[12] James G., Kerber A., The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley, London, 1981 | MR | Zbl

[13] Procesi C., Rings with Polynomial Identities, Marcel Dekker, New York, 1973 | MR | Zbl

[14] Rowen L. H., Polynomial Identities in Ring Theory, Academic Press, New York, 1980 | MR | Zbl