Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 189-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some gage-equivalent forms (including the new ones) of the time-dependent Schrödinger equation for a hydrogenlike atom in a nonstationary electric field of a laser pulse are presented. These forms allow one to develop a perturbation theory for both small and rather large intensities of the electromagnetic field.
@article{FPM_2007_13_1_a10,
     author = {Yu. V. Popov and K. A. Kouzakov},
     title = {Gage-equivalent forms of the {Schr\"odinger} equation for a~hydrogenlike atom in a~nonstationary electric field},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {189--197},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/}
}
TY  - JOUR
AU  - Yu. V. Popov
AU  - K. A. Kouzakov
TI  - Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 189
EP  - 197
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/
LA  - ru
ID  - FPM_2007_13_1_a10
ER  - 
%0 Journal Article
%A Yu. V. Popov
%A K. A. Kouzakov
%T Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 189-197
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/
%G ru
%F FPM_2007_13_1_a10
Yu. V. Popov; K. A. Kouzakov. Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 189-197. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/

[1] Delone N. B., Krainov V. P., “Tunnelnaya i nadbarernaya ionizatsiya atomov i ionov v pole lazernogo izlucheniya”, UFN, 168:5 (1998), 531–549 | DOI | MR

[2] Keldysh L. V., “Ionizatsiya v pole silnoi elektromagnitnoi volny”, ZhETF, 47:5 (1964), 1945–1957

[3] Popov V. C., “Tunnelnaya i mnogofotonnaya ionizatsiya atomov i ionov v silnom lazernom pole (teoriya Keldysha)”, UFN, 174:9 (2004), 921–951 | DOI

[4] Doŝlić N., Danko Bosonac S., “Harmonic oscillator with the radiation reaction interaction”, Phys. Rev. A, 51:5 (1995), 3485–3494 | DOI

[5] Efthimiou C. J., Spector D., “Separation of variables and exactly soluble time-dependent potentials in quantum mechanics”, Phys. Rev. A, 49:4 (1994), 2301–2311 | DOI

[6] Gavrila M., “Atomic stabilization in superintense laser fields”, J. Phys. B, 35:18 (2002), 147–193 | DOI

[7] Henneberger W. C., “Perturbation method for atoms in intense light beams”, Phys. Rev. Lett., 21:12 (1968), 838–841 | DOI

[8] Lambropoulos P., Maragakis P., Zhang J., “Two-electron atoms in strong fields”, Phys. Rep., 305:5 (1998), 203–293 | DOI

[9] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl

[10] Popov A. M., Tikhonova O. V., Volkova E. A., “Strong-field atomic stabilization: numerical simulation and analytical modelling”, J. Phys. B, 36:10 (2003), 125–165 | DOI

[11] Scrinzi A., Ivanov M. Yu., Kienberger R., Villeneuve D. M., “Attosecond physics”, J. Phys. B, 39:1 (2006), 1–37 | DOI | MR

[12] Wolkow D. M., “Über eine Klasse von Lösungen der Diracschen Gleichung”, Z. Phys., 94:3–4 (1935), 250–260 | Zbl