Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_1_a10, author = {Yu. V. Popov and K. A. Kouzakov}, title = {Gage-equivalent forms of the {Schr\"odinger} equation for a~hydrogenlike atom in a~nonstationary electric field}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {189--197}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/} }
TY - JOUR AU - Yu. V. Popov AU - K. A. Kouzakov TI - Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 189 EP - 197 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/ LA - ru ID - FPM_2007_13_1_a10 ER -
%0 Journal Article %A Yu. V. Popov %A K. A. Kouzakov %T Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field %J Fundamentalʹnaâ i prikladnaâ matematika %D 2007 %P 189-197 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/ %G ru %F FPM_2007_13_1_a10
Yu. V. Popov; K. A. Kouzakov. Gage-equivalent forms of the Schr\"odinger equation for a~hydrogenlike atom in a~nonstationary electric field. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 189-197. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a10/
[1] Delone N. B., Krainov V. P., “Tunnelnaya i nadbarernaya ionizatsiya atomov i ionov v pole lazernogo izlucheniya”, UFN, 168:5 (1998), 531–549 | DOI | MR
[2] Keldysh L. V., “Ionizatsiya v pole silnoi elektromagnitnoi volny”, ZhETF, 47:5 (1964), 1945–1957
[3] Popov V. C., “Tunnelnaya i mnogofotonnaya ionizatsiya atomov i ionov v silnom lazernom pole (teoriya Keldysha)”, UFN, 174:9 (2004), 921–951 | DOI
[4] Doŝlić N., Danko Bosonac S., “Harmonic oscillator with the radiation reaction interaction”, Phys. Rev. A, 51:5 (1995), 3485–3494 | DOI
[5] Efthimiou C. J., Spector D., “Separation of variables and exactly soluble time-dependent potentials in quantum mechanics”, Phys. Rev. A, 49:4 (1994), 2301–2311 | DOI
[6] Gavrila M., “Atomic stabilization in superintense laser fields”, J. Phys. B, 35:18 (2002), 147–193 | DOI
[7] Henneberger W. C., “Perturbation method for atoms in intense light beams”, Phys. Rev. Lett., 21:12 (1968), 838–841 | DOI
[8] Lambropoulos P., Maragakis P., Zhang J., “Two-electron atoms in strong fields”, Phys. Rep., 305:5 (1998), 203–293 | DOI
[9] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl
[10] Popov A. M., Tikhonova O. V., Volkova E. A., “Strong-field atomic stabilization: numerical simulation and analytical modelling”, J. Phys. B, 36:10 (2003), 125–165 | DOI
[11] Scrinzi A., Ivanov M. Yu., Kienberger R., Villeneuve D. M., “Attosecond physics”, J. Phys. B, 39:1 (2006), 1–37 | DOI | MR
[12] Wolkow D. M., “Über eine Klasse von Lösungen der Diracschen Gleichung”, Z. Phys., 94:3–4 (1935), 250–260 | Zbl