Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2007_13_1_a1, author = {L. B. Beasley and A. \`E. Guterman and K. Kang and S. Song}, title = {Idempotent {Boolean} matrices and majorization}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {11--29}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/} }
TY - JOUR AU - L. B. Beasley AU - A. È. Guterman AU - K. Kang AU - S. Song TI - Idempotent Boolean matrices and majorization JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2007 SP - 11 EP - 29 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/ LA - ru ID - FPM_2007_13_1_a1 ER -
L. B. Beasley; A. È. Guterman; K. Kang; S. Song. Idempotent Boolean matrices and majorization. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/
[1] Baksalary J. K., Pukelsheim F., Styan G. P. H., “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl
[2] Baksalary J. K., Puntanen S., “Characterization of the best linear unbiased estimator in general Gauss–Markov model with the use of matrix partial orderings”, Linear Algebra Appl., 127 (1990), 363–370 | DOI | MR | Zbl
[3] Bapat R. B., Jain S. K., Snyder L. E., “Nonnegative idempotent matrices and the minus partial order”, Linear Algebra Appl., 261 (1997), 143–154 | DOI | MR | Zbl
[4] Beasley L. B., Pullman N. J., “Linear operators strongly preserving idempotent matrices over semirings”, Linear Algebra Appl., 160 (1992), 217–229 | DOI | MR | Zbl
[5] Chaudhuri R., Mukherjea A., “Idempotent Boolean matrices”, Semigroup Forum., 21 (1980), 273–282 | DOI | MR | Zbl
[6] Flor P., “On groups of nonnegative matrices”, Compositio Math., 21 (1969), 376–382 | MR | Zbl
[7] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR
[8] Gregory D., Kirkland S., Pullman N., “Power convergent Boolean matrices”, Linear Algebra Appl., 179 (1993), 105–117 | DOI | MR | Zbl
[9] Hartwig R. E., “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl
[10] Hartwig R. E., Styan G. P. H., “On some characterizations of the “star” partial ordering for matrices and rank subtractivity”, Linear Algebra Appl., 82 (1986), 145–161 | DOI | MR | Zbl
[11] Hebisch U., Weinert H. J., Semirings. Algebraic Theory and Applications in Computer Science, Ser. Algebra, 5, World Scientific, 1998 | MR | Zbl
[12] Kim K. H., Boolean Matrix Theory and Applications, Pure Appl. Math., 70, Marcel Dekker, New York, 1982 | MR | Zbl
[13] Kolokoltsov V. N., Maslov V. P., Idempotent Analysis and its Applications, Math. Its Appl., 401, Kluwer Academic, Dordrecht, 1997 | MR | Zbl
[14] Lambek J., Lectures on Rings and Modules, Second edition, Chelsea, New York, 1976 | MR | Zbl
[15] Nambooripad K. S. S., “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl
[16] Rao P. S. S. N. V. P., Rao K. P. S. B., “On generalized inverses of Boolean matrices”, Linear Algebra Appl., 11 (1975), 135–153 | DOI | MR | Zbl
[17] Rosenblatt D., “On the graphs of finite idempotent Boolean relation matrices”, J. Res. Nat. Bureau of Standards Sect. B, 67 (1963), 249–256 | MR | Zbl
[18] Schein B., “A construction for idempotent binary relations”, Proc. Japan Acad., 46 (1970), 246–247 | DOI | MR | Zbl
[19] Song S. Z., Kang K. T., “Types and enumeration of idempotent matrices”, Far East J. Math. Sci., 3 (2001), 1029–1042 | MR | Zbl
[20] Werner H. J., “Generalized inversion and weak bi-complementarity”, Linear and Multilinear Algebra, 19 (1986), 357–372 | DOI | MR | Zbl