Idempotent Boolean matrices and majorization
Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 11-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a new structural characterization of idempotent Boolean matrices. This characterization allows us to describe all Boolean matrices that are majorized by a given idempotent.
@article{FPM_2007_13_1_a1,
     author = {L. B. Beasley and A. \`E. Guterman and K. Kang and S. Song},
     title = {Idempotent {Boolean} matrices and majorization},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {11--29},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/}
}
TY  - JOUR
AU  - L. B. Beasley
AU  - A. È. Guterman
AU  - K. Kang
AU  - S. Song
TI  - Idempotent Boolean matrices and majorization
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2007
SP  - 11
EP  - 29
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/
LA  - ru
ID  - FPM_2007_13_1_a1
ER  - 
%0 Journal Article
%A L. B. Beasley
%A A. È. Guterman
%A K. Kang
%A S. Song
%T Idempotent Boolean matrices and majorization
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2007
%P 11-29
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/
%G ru
%F FPM_2007_13_1_a1
L. B. Beasley; A. È. Guterman; K. Kang; S. Song. Idempotent Boolean matrices and majorization. Fundamentalʹnaâ i prikladnaâ matematika, Tome 13 (2007) no. 1, pp. 11-29. http://geodesic.mathdoc.fr/item/FPM_2007_13_1_a1/

[1] Baksalary J. K., Pukelsheim F., Styan G. P. H., “Some properties of matrix partial orderings”, Linear Algebra Appl., 119 (1989), 57–85 | DOI | MR | Zbl

[2] Baksalary J. K., Puntanen S., “Characterization of the best linear unbiased estimator in general Gauss–Markov model with the use of matrix partial orderings”, Linear Algebra Appl., 127 (1990), 363–370 | DOI | MR | Zbl

[3] Bapat R. B., Jain S. K., Snyder L. E., “Nonnegative idempotent matrices and the minus partial order”, Linear Algebra Appl., 261 (1997), 143–154 | DOI | MR | Zbl

[4] Beasley L. B., Pullman N. J., “Linear operators strongly preserving idempotent matrices over semirings”, Linear Algebra Appl., 160 (1992), 217–229 | DOI | MR | Zbl

[5] Chaudhuri R., Mukherjea A., “Idempotent Boolean matrices”, Semigroup Forum., 21 (1980), 273–282 | DOI | MR | Zbl

[6] Flor P., “On groups of nonnegative matrices”, Compositio Math., 21 (1969), 376–382 | MR | Zbl

[7] Golan J. S., Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999 | MR

[8] Gregory D., Kirkland S., Pullman N., “Power convergent Boolean matrices”, Linear Algebra Appl., 179 (1993), 105–117 | DOI | MR | Zbl

[9] Hartwig R. E., “How to partially order regular elements”, Math. Japon., 25:1 (1980), 1–13 | MR | Zbl

[10] Hartwig R. E., Styan G. P. H., “On some characterizations of the “star” partial ordering for matrices and rank subtractivity”, Linear Algebra Appl., 82 (1986), 145–161 | DOI | MR | Zbl

[11] Hebisch U., Weinert H. J., Semirings. Algebraic Theory and Applications in Computer Science, Ser. Algebra, 5, World Scientific, 1998 | MR | Zbl

[12] Kim K. H., Boolean Matrix Theory and Applications, Pure Appl. Math., 70, Marcel Dekker, New York, 1982 | MR | Zbl

[13] Kolokoltsov V. N., Maslov V. P., Idempotent Analysis and its Applications, Math. Its Appl., 401, Kluwer Academic, Dordrecht, 1997 | MR | Zbl

[14] Lambek J., Lectures on Rings and Modules, Second edition, Chelsea, New York, 1976 | MR | Zbl

[15] Nambooripad K. S. S., “The natural partial order on a regular semigroup”, Proc. Edinburgh Math. Soc., 23 (1980), 249–260 | DOI | MR | Zbl

[16] Rao P. S. S. N. V. P., Rao K. P. S. B., “On generalized inverses of Boolean matrices”, Linear Algebra Appl., 11 (1975), 135–153 | DOI | MR | Zbl

[17] Rosenblatt D., “On the graphs of finite idempotent Boolean relation matrices”, J. Res. Nat. Bureau of Standards Sect. B, 67 (1963), 249–256 | MR | Zbl

[18] Schein B., “A construction for idempotent binary relations”, Proc. Japan Acad., 46 (1970), 246–247 | DOI | MR | Zbl

[19] Song S. Z., Kang K. T., “Types and enumeration of idempotent matrices”, Far East J. Math. Sci., 3 (2001), 1029–1042 | MR | Zbl

[20] Werner H. J., “Generalized inversion and weak bi-complementarity”, Linear and Multilinear Algebra, 19 (1986), 357–372 | DOI | MR | Zbl