On rigid quivers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 105-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider quivers that appear in the theory of tiled orders, in particular, rigid quivers. We prove that a quiver having a loop at each vertex is not rigid, and the quiver associated with a finite partially ordered set having one minimal element is rigid.
@article{FPM_2006_12_8_a4,
     author = {V. V. Kirichenko and V. N. Zhuravlev and I. N. Tsiganovskaya},
     title = {On rigid quivers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--120},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/}
}
TY  - JOUR
AU  - V. V. Kirichenko
AU  - V. N. Zhuravlev
AU  - I. N. Tsiganovskaya
TI  - On rigid quivers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 105
EP  - 120
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/
LA  - ru
ID  - FPM_2006_12_8_a4
ER  - 
%0 Journal Article
%A V. V. Kirichenko
%A V. N. Zhuravlev
%A I. N. Tsiganovskaya
%T On rigid quivers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 105-120
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/
%G ru
%F FPM_2006_12_8_a4
V. V. Kirichenko; V. N. Zhuravlev; I. N. Tsiganovskaya. On rigid quivers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 105-120. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/