Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_8_a4, author = {V. V. Kirichenko and V. N. Zhuravlev and I. N. Tsiganovskaya}, title = {On rigid quivers}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {105--120}, publisher = {mathdoc}, volume = {12}, number = {8}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/} }
V. V. Kirichenko; V. N. Zhuravlev; I. N. Tsiganovskaya. On rigid quivers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 105-120. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/
[1] Danlyev Kh. M., “Gomologicheskaya razmernost polumaksimalnykh kolets”, Izv. AN Turkmenskoi SSR. Ser. fiz.-tekhn., khim., geol. nauk, 4 (1989), 83–86
[2] Zhuravlev V. N., Tsyganovskaya I. N., “$Q$-ekvivalentnye konechnye chastichno uporyadochennye mnozhestva”, Vestn. Kievskogo un-ta. Ser. Fiz.-mat. nauki, 1 (2005), 47–51
[3] Zavadskii A. G., Kirichenko V. V., “Moduli bez krucheniya nad pervichnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 57 (1976), 100–116 | MR | Zbl
[4] Kirichenko V. V., “O kvazifrobeniusovykh koltsakh i gorenshteinovykh poryadkakh”, Tr. MIAN, 148, 1978, 168–174 | MR | Zbl
[5] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I, II”, Algebra Discrete Math., 1 (2002), 32–63 ; 2:2 (2003), 47–86 | MR | Zbl | MR | Zbl
[6] Fujita H., “Tiled orders of finite global dimension”, Trans. Amer. Math. Soc., 322 (1990), 329–342 ; “Erratum to “Tiled orders of finite global dimension””, Trans. Amer. Math. Soc., 327 (1991), 919–920 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Fujita H., “Full matrix algebras with structure systems”, Colloq. Math., 98:2 (2003), 249–258 | DOI | MR | Zbl
[8] Fujita H., Sakai Y., “Frobenius full matrix algebras and Gorenstein tiled orders”, Comm. Algebra, 34 (2006), 1181–1203 | DOI | MR | Zbl
[9] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, vol. 1, Math. Its Appl., 575, Kluwer Academic, 2004 | MR | Zbl
[10] Jategaonkar V. A., “Global dimension of triangular orders over a discrete valuation ring”, Proc. Amer. Math. Soc. 1973, 38, 8–14 | DOI | MR | Zbl
[11] Jategaonkar V. A., “Global dimension of tiled orders over a discrete valuation ring”, Trans. Amer. Math. Soc., 196 (1974), 313–330 | DOI | MR | Zbl
[12] Kirichenko V. V., Zelensky A. V., Zhuravlev V. N., “Exponent matrices and tiled orders over discrete valuation rings”, Algebra Comput., 15:5, 6 (2005), 997–1012 | DOI | MR | Zbl
[13] Kirkman E., Kuzmanovich J., “Global dimensions of a class of tiled orders”, J. Algebra, 127 (1989), 57–72 | DOI | MR | Zbl
[14] Roggenkamp K. W., Kirichenko V. V., Khibina M. A., Zhuravlev V. N., “Gorenstein tiled orders”, Comm. Algebra, 29:9 (2001), 4231–4247 | DOI | MR | Zbl
[15] Rump W., “Discrete posets, cell complexes, and the global dimension of tiled orders”, Comm. Algebra, 24 (1996), 55–107 | DOI | MR | Zbl
[16] Tarsy R. B., “Global dimension of orders”, Trans. Amer. Math. Soc., 151 (1970), 335–340 | DOI | MR | Zbl
[17] Wiedemann A., Roggenkamp K. W., “Path orders of global dimension two”, J. Algebra, 80 (1983), 113–133 | DOI | MR | Zbl