On rigid quivers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 105-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider quivers that appear in the theory of tiled orders, in particular, rigid quivers. We prove that a quiver having a loop at each vertex is not rigid, and the quiver associated with a finite partially ordered set having one minimal element is rigid.
@article{FPM_2006_12_8_a4,
     author = {V. V. Kirichenko and V. N. Zhuravlev and I. N. Tsiganovskaya},
     title = {On rigid quivers},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {105--120},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/}
}
TY  - JOUR
AU  - V. V. Kirichenko
AU  - V. N. Zhuravlev
AU  - I. N. Tsiganovskaya
TI  - On rigid quivers
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 105
EP  - 120
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/
LA  - ru
ID  - FPM_2006_12_8_a4
ER  - 
%0 Journal Article
%A V. V. Kirichenko
%A V. N. Zhuravlev
%A I. N. Tsiganovskaya
%T On rigid quivers
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 105-120
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/
%G ru
%F FPM_2006_12_8_a4
V. V. Kirichenko; V. N. Zhuravlev; I. N. Tsiganovskaya. On rigid quivers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 105-120. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a4/

[1] Danlyev Kh. M., “Gomologicheskaya razmernost polumaksimalnykh kolets”, Izv. AN Turkmenskoi SSR. Ser. fiz.-tekhn., khim., geol. nauk, 4 (1989), 83–86

[2] Zhuravlev V. N., Tsyganovskaya I. N., “$Q$-ekvivalentnye konechnye chastichno uporyadochennye mnozhestva”, Vestn. Kievskogo un-ta. Ser. Fiz.-mat. nauki, 1 (2005), 47–51

[3] Zavadskii A. G., Kirichenko V. V., “Moduli bez krucheniya nad pervichnymi koltsami”, Zap. nauch. sem. LOMI AN SSSR, 57 (1976), 100–116 | MR | Zbl

[4] Kirichenko V. V., “O kvazifrobeniusovykh koltsakh i gorenshteinovykh poryadkakh”, Tr. MIAN, 148, 1978, 168–174 | MR | Zbl

[5] Chernousova Zh. T., Dokuchaev M. A., Khibina M. A., Kirichenko V. V., Miroshnichenko S. G., Zhuravlev V. N., “Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. I, II”, Algebra Discrete Math., 1 (2002), 32–63 ; 2:2 (2003), 47–86 | MR | Zbl | MR | Zbl

[6] Fujita H., “Tiled orders of finite global dimension”, Trans. Amer. Math. Soc., 322 (1990), 329–342 ; “Erratum to “Tiled orders of finite global dimension””, Trans. Amer. Math. Soc., 327 (1991), 919–920 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Fujita H., “Full matrix algebras with structure systems”, Colloq. Math., 98:2 (2003), 249–258 | DOI | MR | Zbl

[8] Fujita H., Sakai Y., “Frobenius full matrix algebras and Gorenstein tiled orders”, Comm. Algebra, 34 (2006), 1181–1203 | DOI | MR | Zbl

[9] Hazewinkel M., Gubareni N., Kirichenko V. V., Algebras, Rings and Modules, vol. 1, Math. Its Appl., 575, Kluwer Academic, 2004 | MR | Zbl

[10] Jategaonkar V. A., “Global dimension of triangular orders over a discrete valuation ring”, Proc. Amer. Math. Soc. 1973, 38, 8–14 | DOI | MR | Zbl

[11] Jategaonkar V. A., “Global dimension of tiled orders over a discrete valuation ring”, Trans. Amer. Math. Soc., 196 (1974), 313–330 | DOI | MR | Zbl

[12] Kirichenko V. V., Zelensky A. V., Zhuravlev V. N., “Exponent matrices and tiled orders over discrete valuation rings”, Algebra Comput., 15:5, 6 (2005), 997–1012 | DOI | MR | Zbl

[13] Kirkman E., Kuzmanovich J., “Global dimensions of a class of tiled orders”, J. Algebra, 127 (1989), 57–72 | DOI | MR | Zbl

[14] Roggenkamp K. W., Kirichenko V. V., Khibina M. A., Zhuravlev V. N., “Gorenstein tiled orders”, Comm. Algebra, 29:9 (2001), 4231–4247 | DOI | MR | Zbl

[15] Rump W., “Discrete posets, cell complexes, and the global dimension of tiled orders”, Comm. Algebra, 24 (1996), 55–107 | DOI | MR | Zbl

[16] Tarsy R. B., “Global dimension of orders”, Trans. Amer. Math. Soc., 151 (1970), 335–340 | DOI | MR | Zbl

[17] Wiedemann A., Roggenkamp K. W., “Path orders of global dimension two”, J. Algebra, 80 (1983), 113–133 | DOI | MR | Zbl