The description of zero divisors in monoid of semigroup varieties under wreath product
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 223-231
Voir la notice de l'article provenant de la source Math-Net.Ru
It follows from the author's results published in 1999 that the wreath product of any two overcommutative semigroup varieties coincides with the variety S of all semigroups and S is the zero of the monoid MV of all semigroup varieties under the wreath product of varieties. In this paper, we give a full description of all cases under which the wreath product of two semigroup varieties equals S.
@article{FPM_2006_12_8_a12,
author = {A. V. Tishchenko},
title = {The description of zero divisors in monoid of semigroup varieties under wreath product},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {223--231},
publisher = {mathdoc},
volume = {12},
number = {8},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a12/}
}
TY - JOUR AU - A. V. Tishchenko TI - The description of zero divisors in monoid of semigroup varieties under wreath product JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 223 EP - 231 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a12/ LA - ru ID - FPM_2006_12_8_a12 ER -
A. V. Tishchenko. The description of zero divisors in monoid of semigroup varieties under wreath product. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 223-231. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a12/