A~class of groups in which all unconditionally closed sets are algebraic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in any subgroup of a direct product of countable groups, the property of being an unconditionally closed set coincides with that of being an algebraic set.
@article{FPM_2006_12_8_a11,
     author = {O. V. Sipacheva},
     title = {A~class of groups in which all unconditionally closed sets are algebraic},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {217--222},
     publisher = {mathdoc},
     volume = {12},
     number = {8},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/}
}
TY  - JOUR
AU  - O. V. Sipacheva
TI  - A~class of groups in which all unconditionally closed sets are algebraic
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 217
EP  - 222
VL  - 12
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/
LA  - ru
ID  - FPM_2006_12_8_a11
ER  - 
%0 Journal Article
%A O. V. Sipacheva
%T A~class of groups in which all unconditionally closed sets are algebraic
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 217-222
%V 12
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/
%G ru
%F FPM_2006_12_8_a11
O. V. Sipacheva. A~class of groups in which all unconditionally closed sets are algebraic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/

[1] Markov A. A., “O bezuslovno zamknutykh mnozhestvakh”, DAN SSSR, 44:5 (1944), 196–197

[2] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 9:1 (1945), 3–64 | MR | Zbl

[3] Markov A. A., “O bezuslovno zamknutykh mnozhestvakh”, Mat. sb., 18:1 (1946), 3–28 | MR | Zbl

[4] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954 | MR | Zbl

[5] Sipacheva O. V., Consistent solution of Markov's problem about algebraic sets, arXiv:math.GR/0605558