A class of groups in which all unconditionally closed sets are algebraic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222
It is proved that, in any subgroup of a direct product of countable groups, the property of being an unconditionally closed set coincides with that of being an algebraic set.
@article{FPM_2006_12_8_a11,
author = {O. V. Sipacheva},
title = {A~class of groups in which all unconditionally closed sets are algebraic},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {217--222},
year = {2006},
volume = {12},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/}
}
O. V. Sipacheva. A class of groups in which all unconditionally closed sets are algebraic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/
[1] Markov A. A., “O bezuslovno zamknutykh mnozhestvakh”, DAN SSSR, 44:5 (1944), 196–197
[2] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 9:1 (1945), 3–64 | MR | Zbl
[3] Markov A. A., “O bezuslovno zamknutykh mnozhestvakh”, Mat. sb., 18:1 (1946), 3–28 | MR | Zbl
[4] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954 | MR | Zbl
[5] Sipacheva O. V., Consistent solution of Markov's problem about algebraic sets, arXiv:math.GR/0605558