A~class of groups in which all unconditionally closed sets are algebraic
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, in any subgroup of a direct product of countable groups, the property of being an unconditionally closed set coincides with that of being an algebraic set.
@article{FPM_2006_12_8_a11,
author = {O. V. Sipacheva},
title = {A~class of groups in which all unconditionally closed sets are algebraic},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {217--222},
publisher = {mathdoc},
volume = {12},
number = {8},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/}
}
TY - JOUR AU - O. V. Sipacheva TI - A~class of groups in which all unconditionally closed sets are algebraic JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 217 EP - 222 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/ LA - ru ID - FPM_2006_12_8_a11 ER -
O. V. Sipacheva. A~class of groups in which all unconditionally closed sets are algebraic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/