Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_8_a11, author = {O. V. Sipacheva}, title = {A~class of groups in which all unconditionally closed sets are algebraic}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {217--222}, publisher = {mathdoc}, volume = {12}, number = {8}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/} }
TY - JOUR AU - O. V. Sipacheva TI - A~class of groups in which all unconditionally closed sets are algebraic JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 217 EP - 222 VL - 12 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/ LA - ru ID - FPM_2006_12_8_a11 ER -
O. V. Sipacheva. A~class of groups in which all unconditionally closed sets are algebraic. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 8, pp. 217-222. http://geodesic.mathdoc.fr/item/FPM_2006_12_8_a11/
[1] Markov A. A., “O bezuslovno zamknutykh mnozhestvakh”, DAN SSSR, 44:5 (1944), 196–197
[2] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. mat., 9:1 (1945), 3–64 | MR | Zbl
[3] Markov A. A., “O bezuslovno zamknutykh mnozhestvakh”, Mat. sb., 18:1 (1946), 3–28 | MR | Zbl
[4] Kaplansky I., Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor, 1954 | MR | Zbl
[5] Sipacheva O. V., Consistent solution of Markov's problem about algebraic sets, arXiv:math.GR/0605558