Hamiltonian theory of anyons in crystals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 129-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Semiclassical wave packets for electrons in crystals, subject to external electromagnetic field, satisfy Hamiltonian equations. In $(2+1)$-dimensions and in the limit of uniform fields, the symmetry group results a two-folded Galilei algebra, incorporating an “exotic” central charge. It has the physical meaning of the Berry-phase curvature. In the Hamiltonian scheme, we discuss possible deformations of that algebra and the physical meaning.
@article{FPM_2006_12_7_a9,
author = {L. Martina},
title = {Hamiltonian theory of anyons in crystals},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {129--139},
publisher = {mathdoc},
volume = {12},
number = {7},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a9/}
}
L. Martina. Hamiltonian theory of anyons in crystals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 129-139. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a9/