Hamiltonian theory of anyons in crystals
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 129-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Semiclassical wave packets for electrons in crystals, subject to external electromagnetic field, satisfy Hamiltonian equations. In $(2+1)$-dimensions and in the limit of uniform fields, the symmetry group results a two-folded Galilei algebra, incorporating an “exotic” central charge. It has the physical meaning of the Berry-phase curvature. In the Hamiltonian scheme, we discuss possible deformations of that algebra and the physical meaning.
@article{FPM_2006_12_7_a9,
     author = {L. Martina},
     title = {Hamiltonian theory of anyons in crystals},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a9/}
}
TY  - JOUR
AU  - L. Martina
TI  - Hamiltonian theory of anyons in crystals
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 129
EP  - 139
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a9/
LA  - ru
ID  - FPM_2006_12_7_a9
ER  - 
%0 Journal Article
%A L. Martina
%T Hamiltonian theory of anyons in crystals
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 129-139
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a9/
%G ru
%F FPM_2006_12_7_a9
L. Martina. Hamiltonian theory of anyons in crystals. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 129-139. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a9/