On skew-symmetric and general deformations of Lax pseudodifferential operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 101-116
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonlinear deformation is conjectured for the reduction of the third KP flow on the subspace of skew-symmetric operators, and the conjecture is proved for the linearized flow. As a by-product, we find a peculiar (nonquantum) polynomial deformation of the numbers $\left\{\binom{2n+1}{2s+1}\frac{4^{s+1}-1}{s+1}B_{2s+2}\right\}$, where $B_m$'s are the Bernoulli numbers. General open questions and generalizations are also discussed. The conjecture is extended to all the flows, and its linearized version is proved.
@article{FPM_2006_12_7_a7,
author = {B. A. Kupershmidt},
title = {On skew-symmetric and general deformations of {Lax} pseudodifferential operators},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {101--116},
publisher = {mathdoc},
volume = {12},
number = {7},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/}
}
TY - JOUR AU - B. A. Kupershmidt TI - On skew-symmetric and general deformations of Lax pseudodifferential operators JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 101 EP - 116 VL - 12 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/ LA - ru ID - FPM_2006_12_7_a7 ER -
B. A. Kupershmidt. On skew-symmetric and general deformations of Lax pseudodifferential operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 101-116. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/