On skew-symmetric and general deformations of Lax pseudodifferential operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 101-116

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear deformation is conjectured for the reduction of the third KP flow on the subspace of skew-symmetric operators, and the conjecture is proved for the linearized flow. As a by-product, we find a peculiar (nonquantum) polynomial deformation of the numbers $\left\{\binom{2n+1}{2s+1}\frac{4^{s+1}-1}{s+1}B_{2s+2}\right\}$, where $B_m$'s are the Bernoulli numbers. General open questions and generalizations are also discussed. The conjecture is extended to all the flows, and its linearized version is proved.
@article{FPM_2006_12_7_a7,
     author = {B. A. Kupershmidt},
     title = {On skew-symmetric and general deformations of {Lax} pseudodifferential operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/}
}
TY  - JOUR
AU  - B. A. Kupershmidt
TI  - On skew-symmetric and general deformations of Lax pseudodifferential operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 101
EP  - 116
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/
LA  - ru
ID  - FPM_2006_12_7_a7
ER  - 
%0 Journal Article
%A B. A. Kupershmidt
%T On skew-symmetric and general deformations of Lax pseudodifferential operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 101-116
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/
%G ru
%F FPM_2006_12_7_a7
B. A. Kupershmidt. On skew-symmetric and general deformations of Lax pseudodifferential operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 101-116. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a7/