Minimal surfaces associated with nonpolynomial contact symmetries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 93-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two infinite sequences of minimal surfaces in space are constructed using symmetry analysis. In particular, explicit formulas are obtained for the self-intersecting minimal surface that fills the trefoil knot.
@article{FPM_2006_12_7_a6,
     author = {A. V. Kiselev},
     title = {Minimal surfaces associated with nonpolynomial contact symmetries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/}
}
TY  - JOUR
AU  - A. V. Kiselev
TI  - Minimal surfaces associated with nonpolynomial contact symmetries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 93
EP  - 100
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/
LA  - ru
ID  - FPM_2006_12_7_a6
ER  - 
%0 Journal Article
%A A. V. Kiselev
%T Minimal surfaces associated with nonpolynomial contact symmetries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 93-100
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/
%G ru
%F FPM_2006_12_7_a6
A. V. Kiselev. Minimal surfaces associated with nonpolynomial contact symmetries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 93-100. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/

[1] Bocharov A. V., Verbovetskii A. M., Vinogradov A. M. i dr., Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, 2-e izd., eds. A. M. Vinogradov, I. S. Krasilschik, Faktorial, M., 2005

[2] Kiselev A. V., “O reduktsii uravneniya minimalnykh poverkhnostei”, Trudy XXVII Konferentsii molodykh uchenykh (Mekhaniko-matematicheskii fakultet MGU, 11–21 aprelya 2005), 67–71 | Zbl

[3] Bîlă N., “Lie groups applications to minimal surfaces PDE”, Differ. Geom. Dyn. Syst., 1:1 (1999), 1–9 | MR

[4] Kiselev A. V., Manno G., “On the symmetry structure of the minimal surface equation”, Proc. IX Conf. “Differential Geometry and Its Applications” (August 2004. Prague: Charles Univ.), 2005, 483–490 arXiv:math.DG/0410557. | MR

[5] Nitsche J. C. C., Vorlesungen über Minimalflächen., Springer, Berlin, 1974 | MR

[6] Osserman R., A Survey of Minimal Surfaces, ed. Van Nostrand Reinhold, New York, 1969 | MR