Minimal surfaces associated with nonpolynomial contact symmetries
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 93-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Two infinite sequences of minimal surfaces in space are constructed using symmetry analysis. In particular, explicit formulas are obtained for the self-intersecting minimal surface that fills the trefoil knot.
@article{FPM_2006_12_7_a6,
     author = {A. V. Kiselev},
     title = {Minimal surfaces associated with nonpolynomial contact symmetries},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {93--100},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/}
}
TY  - JOUR
AU  - A. V. Kiselev
TI  - Minimal surfaces associated with nonpolynomial contact symmetries
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 93
EP  - 100
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/
LA  - ru
ID  - FPM_2006_12_7_a6
ER  - 
%0 Journal Article
%A A. V. Kiselev
%T Minimal surfaces associated with nonpolynomial contact symmetries
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 93-100
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/
%G ru
%F FPM_2006_12_7_a6
A. V. Kiselev. Minimal surfaces associated with nonpolynomial contact symmetries. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 93-100. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a6/