Multi-component vortex solutions in symmetric coupled nonlinear Schr\"{o}dinger equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 35-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hamiltonian system of incoherently coupled nonlinear Schrödinger equations is considered in the context of physical experiments in photorefractive crystals and Bose–Einstein condensates. Due to the incoherent coupling, the Hamiltonian system has a group of various symmetries that include symmetries with respect to gauge transformations and polarization rotations. We show that the group of rotational symmetries generates a large family of vortex solutions that generalize scalar vortices, vortex pairs with either double or hidden charge and coupled states between solitons and vortices. Novel families of vortices with different frequencies and vortices with different charges at the same component are constructed and their linearized stability problem is block-diagonalized for numerical analysis of unstable eigenvalues.
@article{FPM_2006_12_7_a3,
     author = {A. S. Desyatnikov and D. E. Pelinovsky and J. Yang},
     title = {Multi-component vortex solutions in symmetric coupled nonlinear {Schr\"{o}dinger} equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {35--63},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a3/}
}
TY  - JOUR
AU  - A. S. Desyatnikov
AU  - D. E. Pelinovsky
AU  - J. Yang
TI  - Multi-component vortex solutions in symmetric coupled nonlinear Schr\"{o}dinger equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 35
EP  - 63
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a3/
LA  - ru
ID  - FPM_2006_12_7_a3
ER  - 
%0 Journal Article
%A A. S. Desyatnikov
%A D. E. Pelinovsky
%A J. Yang
%T Multi-component vortex solutions in symmetric coupled nonlinear Schr\"{o}dinger equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 35-63
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a3/
%G ru
%F FPM_2006_12_7_a3
A. S. Desyatnikov; D. E. Pelinovsky; J. Yang. Multi-component vortex solutions in symmetric coupled nonlinear Schr\"{o}dinger equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 35-63. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a3/

[1] Manakov S. V., “K teorii dvumernykh statsionarnykh samofokusiruyuschikhsya elektromagnitnykh voln”, Zhurn. eksperiment. i teor. fiz., 38 (1974), 248–253

[2] Ahles M., Motzek K., Stepken A., Kaiser F., Weilnau C., Denz C., “Stabilization and breakup of coupled dipole-mode beams in an anisotropic nonlinear medium”, J. Optical Soc. Amer. B, 19 (2002), 557–562 | DOI

[3] Anastassiou C., Soljacic M., Segev M., Eugenieva E. D., Christodoulides D. N., Kip D., Musslimani Z. H., Torres J. P., “Eliminating the transverse instabilities of Kerr solitons”, Phys. Rev. Lett., 85 (2000), 4888–4891 | DOI | Zbl

[4] Berge L., “Wave collapse in physics: Principles and applications to light and plasma waves”, Phys. Rep., 303 (1998), 260–370 | DOI | MR

[5] Bigelow M. S., Park Q. H., Boyd R. W., “Stabilization of the propagation of spatial solitons”, Phys. Rev. E., 66 (2002), 046631 | DOI | MR

[6] Briedis D., Petersen D. E., Edmundson D., Krolikowski W., Bang O., “Ring vortex solitons in nonlocal nonlinear media”, Optics Express, 13 (2005), 435 | DOI

[7] Christodoulides D. N., Coskun T. H., Mitchell M., Segev M., “Theory of incoherent self-focusing in biased photorefractive media”, Phys. Rev. Lett., 78 (1997), 646–649 | DOI

[8] Desyatnikov A. S., Kivshar Yu. S., “Necklace-ring vector solitons”, Phys. Rev. Lett., 87 (2001), 033901 | DOI

[9] Desyatnikov A. S., Kivshar Yu. S., Motzek K., Kaiser F., Weilnay C., Denz C., “Multicomponent dipole-mode spatial solitons”, Optics Lett., 27 (2002), 634–636 | DOI

[10] Desyatnikov A. S., Kivshar Yu. S., Torner L., “Optical vortices and vortex solitons”, Progress in Optics, 47 (2005), 219–319, Elsevier, Amsterdam | DOI

[11] Desyatnikov A. S., Mihalache D., Mazilu D., Malomed B. A., Denz C., Lederer F., “Two-dimensional solitons with hidden and explicit vorticity in bimodal cubic-quintic media”, Phys. Rev. E., 71 (2005), 026615 | DOI

[12] Desyatnikov A. S., Neshev D., Ostrovskaya E. A., Kivshar Yu. S., Krolikowski W., Luther-Davies B., Garcia-Ripoll J. J., Perez-Garcia V. M., “Multipole spatial vector solitons”, Optics Lett., 26 (2001), 435–437 | DOI

[13] Desyatnikov A. S., Neshev D., Ostrovskaya E. A., Kivshar Yu. S., McCarthy G., Krolikovski W., Luther-Davies B., “Multipole composite spatial solitons: Theory and experiment”, J. Optical Soc. Amer. B, 19 (2002), 586 | DOI | MR

[14] Fetter A. L., Svidzinsky A. A., “Vortices in a trapped dilute Bose–Einstein condensate”, J. Physics: Condensed Matter., 13 (2001), R135–R194 | DOI

[15] Firth W. J., Skryabin D. V. “Optical solitons carrying orbital angular momentum”, Phys. Rev. Lett., 79 (1997), 2450 | DOI

[16] Garcia-Ripoll J. J., Perez-Garcia V. M., Ostrovskaya E. A., Kivshar Yu. S., “Dipole-mode vector solitons”, Phys. Rev. Lett., 85 (2000), 82–85 | DOI

[17] Jeng C. C., Shih M. F., Motzek K., Kivshar Yu., “Partially incoherent optical vortices in self-focusing nonlinear media”, Phys. Rev. Lett., 92 (2004), 043904–4 | DOI

[18] Kivshar Yu. S., Agrawal G. P., Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego, 2003

[19] Mamaev A. V., Saffman M., Zozulya A. A., “Propagation of a mutually incoherent optical vortex pair in anisotropic nonlinear media”, J. Optics B., 6 (2004), S318

[20] Meyer K. R., Hall G. R., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer, New York, 1992 | MR

[21] Mihalache D., Mazilu D., Towers I., Malomed B. A., Lederer F., “Stable two-dimensional spinning solitons in a bimodal cubic-quintic model with four-wave mixing”, J. Optics A, 4 (2002), 615

[22] Motzek K., Kaiser F., Chu W. H., Shih M. F., Kivshar Yu. S., “Soliton transverse instabilities in anisotropic nonlocal self-focusing media”, Optics Lett., 29 (2004), 280–282 | DOI

[23] Motzek K., Kaiser F., Weilnau C., Denz C., McCarthy G., Krolikowski W., Desyatnikov A., Kivshar Yu. S., “Multi-component vector solitons in photorefractive crystals”, Optics Comm., 209 (2002), 501–506 | DOI

[24] Motzek K., Kivshar Yu. S., Shih M. F., Swartzlander G. A., “Spatial coherence singularities and incoherent vortex solitons”, J. Optical Soc. Amer. B, 22 (2005), 1437–1442 | DOI

[25] Musslimani Z. H., Segev M., Christodoulides D. N., “Multicomponent two-dimensional solitons carrying topological charges”, Optics Lett., 25 (2000), 61 | DOI

[26] Musslimani Z. H., Segev M., Christodoulides D. N., Soljacic M., “Composite multihump vector solitons carrying topological charge”, Phys. Rev. Lett., 84 (2000), 1164–1167 | DOI

[27] Nye J. F., Berry M. V., “Dislocations in wave trains”, Proc. Roy. Soc. London Ser. A, 336, 1974, 165–190 | MR | Zbl

[28] Optical Vortices, 228), eds. M. Vasnetsov, K. Staliunas, Nova Science, Huntington, 1999 (Horizons in World Physics; | Zbl

[29] Palacios D. M., Maleev I. D., Marathay A. S., Swartzlander G. A., “Spatial correlation singularity of a vortex field”, Phys. Rev. Lett., 92 (2004), 143905–4 | DOI

[30] Park Q. H., Eberly J. H., “Nontopological vortex in a two-component Bose–Einstein condensate”, Phys. Rev. A, 70 (2004), 021602(R) | DOI

[31] Pego R. L., Warchall H. A., “Spectrally stable encapsulated vortices for nonlinear Schrödinger equations”, J. Nonlinear Sci., 12 (2002), 347–394 | DOI | MR | Zbl

[32] Skryabin D. V., McSloy J. M., Firth W. J., “Stability of spiralling solitary waves in Hamiltonian systems”, Phys. Rev. E, 66, 055602–4 | DOI | MR

[33] Soljacic M., Sears S., Segev M., “Self-trapping of “necklace” beams in self-focusing Kerr media”, Phys. Rev. Lett., 81 (1998), 4851–4854 | DOI

[34] Soljacic M., Segev M., “Self-trapping of “necklace-ring” beams in self-focusing Kerr media”, Phys. Rev. E, 62 (2000), 2810–2820 | DOI

[35] Soljacic M., Segev M., “Integer and fractional angular momentum borne on self-trapped necklace-ring beams”, Phys. Rev. Lett., 86 (2001), 420–423 | DOI

[36] Soskin M. S., Vasnetsov M. V., “Singular optics”, Progress in Optics, 42, ed. E. Wolf, Elsevier, Amsterdam, 2001, 219–276

[37] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer, New York, 1999 | MR

[38] Vuong L. T., Grow T. D., Ishaaya A., Gaeta A. L., Hooft G. W., Eliel E. R., Fibich G., “Collapse of optical vortices”, Phys. Rev. Lett., 2006 | Zbl

[39] Wang J., Ye F., Dong L., Zai T., Li Y. P., “Composite vector solitons with topological charges and their stability analysis”, Proc. SPIE, 5646 (2005), 6–16 | DOI

[40] Yakimenko A. I., Zaliznyak Yu. A., Kivshar Yu. S., “Stable vortex solitons in nonlocal self-focusing nonlinear media”, Phys. Rev. E., 71 (2005), 065603 | DOI

[41] Yang J., Pelinovsky D. E., “Stable vortex and dipole vector solitons in a saturable nonlinear medium”, Phys. Rev. E, 67 (2003), 016608 | DOI | MR

[42] Ye F., Wang J., Dong L., Li Y.-P., “Suppresion of modulational instability of ring vector solitons”, Optics Comm., 230 (2004), 219–223 | DOI