On the variational integrating matrix for hyperbolic systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 251-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary and sufficient condition for a hyperbolic system to be an Euler–Lagrange system with a first-order Lagrangian up to multiplication by some matrix. If this condition is satisfied and an integral of the system is known to us, then we can construct a family of higher symmetries that depend on an arbitrary function. Also, we consider the systems that satisfy the above criterion and that possess a sequence of the generalized Laplace invariants with respect to one of the characteristics; then we prove that the generalized Laplace invariants with respect to the other characteristic are uniquely defined.
@article{FPM_2006_12_7_a16,
     author = {S. Ya. Startsev},
     title = {On the variational integrating matrix for hyperbolic systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - On the variational integrating matrix for hyperbolic systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 251
EP  - 262
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/
LA  - ru
ID  - FPM_2006_12_7_a16
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T On the variational integrating matrix for hyperbolic systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 251-262
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/
%G ru
%F FPM_2006_12_7_a16
S. Ya. Startsev. On the variational integrating matrix for hyperbolic systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 251-262. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/