On the variational integrating matrix for hyperbolic systems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 251-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a necessary and sufficient condition for a hyperbolic system to be an Euler–Lagrange system with a first-order Lagrangian up to multiplication by some matrix. If this condition is satisfied and an integral of the system is known to us, then we can construct a family of higher symmetries that depend on an arbitrary function. Also, we consider the systems that satisfy the above criterion and that possess a sequence of the generalized Laplace invariants with respect to one of the characteristics; then we prove that the generalized Laplace invariants with respect to the other characteristic are uniquely defined.
@article{FPM_2006_12_7_a16,
     author = {S. Ya. Startsev},
     title = {On the variational integrating matrix for hyperbolic systems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {251--262},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - On the variational integrating matrix for hyperbolic systems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 251
EP  - 262
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/
LA  - ru
ID  - FPM_2006_12_7_a16
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T On the variational integrating matrix for hyperbolic systems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 251-262
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/
%G ru
%F FPM_2006_12_7_a16
S. Ya. Startsev. On the variational integrating matrix for hyperbolic systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 251-262. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/

[1] Gureva A. M., Zhiber A. V., “Invarianty Laplasa dvumerizovannykh otkrytykh tsepochek Tody”, Teor. i matem. fiz., 138:3 (2004), 401–421 | MR

[2] Demskoi D. K., “Ob odnom klasse sistem liuvillevskogo tipa”, Teor. i matem. fizika., 141:2 (2004), 208–227 | MR | Zbl

[3] Demskoi D. K., Startsev S. Ya., “O postroenii simmetrii po integralam giperbolicheskikh sistem uravnenii”, Fundament. i prikl. mat., 10:1 (2004), 29–37 | MR | Zbl

[4] Zhiber A. V., Sokolov V. V., “Tochno integriruemye uravneniya liuvillevskogo tipa”, Uspekhi mat. nauk, 56:1 (2001), 63–106 | MR | Zbl

[5] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[6] Startsev S. Ya., “O giperbolicheskikh uravneniyakh, dopuskayuschikh differentsialnye podstanovki”, Teor. i matem. fiz., 127:1 (2001), 63–74 | MR | Zbl

[7] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, Izd. inostr. lit., M., 1957

[8] Ferapontov E. B., “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, Teor. i matem. fiz., 110:1 (1997), 86–98 | MR

[9] Tsarev S. P., “Faktorizatsiya lineinykh differentsialnykh operatorov s chastnymi proizvodnymi i metod Darbu integrirovaniya nelineinykh uravnenii s chastnymi proizvodnymi”, Teor. i matem. fiz., 122:1 (2000), 144–160 | MR | Zbl

[10] Anderson I. M., Dutchamp T., “On the existence of global variational principles”, Amer. J. Math., 102 (1980), 781–868 | DOI | MR | Zbl

[11] Anderson I. M., Kamran N., The variational bicomplex for second order scalar partial differential equations in the plane, Preprint, Centre de Recherches Mathématiques de l'Université de Montréal, 1994

[12] Darboux G., Leçons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, 2, Gauthier-Villars, Paris, 1915

[13] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, 1, Hermann, Paris, 1896; 2, 1898 | Zbl

[14] Kiselev A. V., “On conservation laws for the Toda equations”, Acta Appl. Math., 83:1–2 (2004), 175–182 | DOI | MR | Zbl

[15] Volterra V., Leçons sur les fonctions de lignes, Gauthier-Villars, Paris, 1913