Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_7_a16, author = {S. Ya. Startsev}, title = {On the variational integrating matrix for hyperbolic systems}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {251--262}, publisher = {mathdoc}, volume = {12}, number = {7}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/} }
S. Ya. Startsev. On the variational integrating matrix for hyperbolic systems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 251-262. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a16/
[1] Gureva A. M., Zhiber A. V., “Invarianty Laplasa dvumerizovannykh otkrytykh tsepochek Tody”, Teor. i matem. fiz., 138:3 (2004), 401–421 | MR
[2] Demskoi D. K., “Ob odnom klasse sistem liuvillevskogo tipa”, Teor. i matem. fizika., 141:2 (2004), 208–227 | MR | Zbl
[3] Demskoi D. K., Startsev S. Ya., “O postroenii simmetrii po integralam giperbolicheskikh sistem uravnenii”, Fundament. i prikl. mat., 10:1 (2004), 29–37 | MR | Zbl
[4] Zhiber A. V., Sokolov V. V., “Tochno integriruemye uravneniya liuvillevskogo tipa”, Uspekhi mat. nauk, 56:1 (2001), 63–106 | MR | Zbl
[5] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl
[6] Startsev S. Ya., “O giperbolicheskikh uravneniyakh, dopuskayuschikh differentsialnye podstanovki”, Teor. i matem. fiz., 127:1 (2001), 63–74 | MR | Zbl
[7] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, Izd. inostr. lit., M., 1957
[8] Ferapontov E. B., “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, Teor. i matem. fiz., 110:1 (1997), 86–98 | MR
[9] Tsarev S. P., “Faktorizatsiya lineinykh differentsialnykh operatorov s chastnymi proizvodnymi i metod Darbu integrirovaniya nelineinykh uravnenii s chastnymi proizvodnymi”, Teor. i matem. fiz., 122:1 (2000), 144–160 | MR | Zbl
[10] Anderson I. M., Dutchamp T., “On the existence of global variational principles”, Amer. J. Math., 102 (1980), 781–868 | DOI | MR | Zbl
[11] Anderson I. M., Kamran N., The variational bicomplex for second order scalar partial differential equations in the plane, Preprint, Centre de Recherches Mathématiques de l'Université de Montréal, 1994
[12] Darboux G., Leçons sur la théorie générale des surfaces et les applications geometriques du calcul infinitesimal, 2, Gauthier-Villars, Paris, 1915
[13] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, 1, Hermann, Paris, 1896; 2, 1898 | Zbl
[14] Kiselev A. V., “On conservation laws for the Toda equations”, Acta Appl. Math., 83:1–2 (2004), 175–182 | DOI | MR | Zbl
[15] Volterra V., Leçons sur les fonctions de lignes, Gauthier-Villars, Paris, 1913