The classical Bertrand--Darboux problem
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 231-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known problem of classical mechanics considered by Bertrand (1857) and Darboux (1901) is reviewed in the context of Cartan's geometry.
@article{FPM_2006_12_7_a15,
     author = {R. G. Smirnov},
     title = {The classical {Bertrand--Darboux} problem},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {231--250},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a15/}
}
TY  - JOUR
AU  - R. G. Smirnov
TI  - The classical Bertrand--Darboux problem
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 231
EP  - 250
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a15/
LA  - ru
ID  - FPM_2006_12_7_a15
ER  - 
%0 Journal Article
%A R. G. Smirnov
%T The classical Bertrand--Darboux problem
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 231-250
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a15/
%G ru
%F FPM_2006_12_7_a15
R. G. Smirnov. The classical Bertrand--Darboux problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 231-250. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a15/

[1] Borisov A. B., Mamaev I. S., Klassicheskaya dinamika v neevklidovykh prostranstvakh, In-t matem. modelirovaniya, M., 2004

[2] Ankiewicz A., Pask C., “The complete Whittaker theorem for two-dimensional integrable systems and its applications”, J. Phys. A, 16 (1983), 4203–4208 | DOI | MR | Zbl

[3] Bertrand J. M., “Mémoire sur quelques-unes des forms les plus simples que puissent présenter les intégrales des équations différentielles du mouvement d'un point matériel”, J. Math. Pures Appl., 2 (1857), 113–140

[4] Bruce A. T., McLenaghan R. G., Smirnov R. G., “A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables”, J. Geom. Phys., 39:4 (2001), 301–322 | DOI | MR | Zbl

[5] Cartan É., La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés, Hermann, Paris, 1935

[6] Chanu C., Degiovanni L., McLenaghan R. G., Geometrical classification of Killing tensors on bidimensional flat manifolds, 18, Quaderni del Departimento di Matematica, Universita di Torino, 2005 | MR

[7] Darboux G., “Sur un probléme de mècanique”, Arch. Néerlandaises Sci., 6 (1901), 371–376 | Zbl

[8] Deeley R. J., Horwood J. T., McLenaghan R. G., Smirnov R. G., “Theory of algebraic invariants of vector spaces of Killing tensors: Methods for computing the fundamental invariants”, Proc. of Institute of Mathematics of NAS of Ukraine. (Proc., Fifth Int. Conf. “Symmetry in Nonlinear Mathematical Physics-2003”), 50, eds. A. G. Nikitin, V. M. Boyko, Ro. O. Popovych, I. A. Yehorchenko, 2004, 1079–1086 | MR | Zbl

[9] Eisenhart L. P., “Separable systems of Stäckel”, Ann. Math., 35 (1934), 371–305 | DOI | MR

[10] Fels M., Olver P. J., “Moving coframes. I. A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[11] Fels M., Olver P. J., “Moving coframes. II. Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[12] Guggenheimer H. W., Differential Geometry, Dover, New York, 1977 | MR | Zbl

[13] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Invariant classification of othogonally separable Hamiltonian systems in Euclidean space”, Comm. Math. Phys., 259 (2005), 679–709 | DOI | MR | Zbl

[14] Horwood J. T., McLenaghan R. G., Transformations to pseudo-Cartesian coordiantes in locally flat pseudo-Riemannian spaces, Preprint, University of Waterloo, 2006 | MR

[15] Ivey T. A., Landsberg J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Forms, Amer. Math. Soc., Providence, 2003 | MR | Zbl

[16] Kalnins E. G., Kress J. M., Miller W., Jr., “Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory”, J. Math. Phys., 46:10 103507 (2005) | DOI | MR

[17] Liouville J., “Sur quelques cas particuliers où les é quations de mouvement d'un point matériel peuvent s'intégrer”, J. Math. Pures Appl., 11 (1846), 345–378

[18] MacArthur J. D., The Equivalence Problem in Differential Geometry, MSc thesis, Dalhousie University, Halifax, 2005

[19] McLenaghan R. G., Smirnov R. G., “Intrinsic characterization of orthogonal separability for natural. Hamiltonians with scalar potentials on pseudo-Riemannian spaces”, J. Nonlinear Math. Phys., 9:1 (2002), 140–151 | DOI | MR

[20] McLenaghan R. G., Smirnov R. G., The D., “Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the $O(4)$-symmetric Yang–Mills theories of Yatsun”, J. Math. Phys., 43 (2002), 1422–1440 | DOI | MR | Zbl

[21] McLenaghan R. G., Smirnov R. G., The D., “An extension of the classical theory of invariants to pseudo-Riemannian geometry and Hamiltonian mechanics”, J. Math. Phys., 45 (2004), 1079–1120 | DOI | MR | Zbl

[22] Morera G., “Sulla separazione delle variabili nelle equazioni del moto di un punto materiale su una superficie”, Atti Sci. di Torino., 16 (1881), 276–295

[23] Olver P. J., Classical Theory of Invariatns, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[24] Olver P. J., “A survey of moving frames”, Computer Algebra and Geometric Algebra with Applications, eds. H. Li, P. J. Olver, G. Sommer, Springer, New York, 2005, 105–138 | Zbl

[25] Rauch-Wojciechowski S., Waksjö C., “What an effective criterion of separability says about the Calogero type systems?”, J. Nonlinear Math. Phys., 12 (2005), 535–547 | DOI | MR

[26] Schouten J. A., “Über Differentialkomitanten zweier kontravarianter Grössen”, Proc. Konink. Nederl. Akad. Wetensch., 43, 1940, 449–452 | MR | Zbl

[27] Smirnov R. G., Yue J., “Covariants, joint invariants and the problem of equivalence in the invariant theory of Killing tensors defined in pseudo-Riemannian manifolds of constant curvature”, J. Math. Phys., 45 (2004), 4141–4163 | DOI | MR | Zbl

[28] The D., Notes on complete sets of group-invariants in $\mathcal K^2(\mathbb{E}^2)$ and $\mathcal K^3(\mathbb{E}^2)$, Preprint, McGill University, 2003

[29] Whittaker E. T., A Tretise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Univ. Press, London, 1937 | MR

[30] Winternitz P., Frivs I., “Invariant expansions of relativistic amplitudes and subroups of the proper Lorenz group”, Sov. J. Nuclear Phys., 1 (1965), 636–643 | MR

[31] Wojciechowski S., “Separability of an integrable case of the Hénon–Heiles system”, Phys. Lett. A, 100:6 (1984), 277–278 | DOI | MR