Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_7_a10, author = {A. G. Meshkov}, title = {On symmetry classification of third order evolutionary systems of divergent type}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {141--161}, publisher = {mathdoc}, volume = {12}, number = {7}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/} }
TY - JOUR AU - A. G. Meshkov TI - On symmetry classification of third order evolutionary systems of divergent type JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 141 EP - 161 VL - 12 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/ LA - ru ID - FPM_2006_12_7_a10 ER -
A. G. Meshkov. On symmetry classification of third order evolutionary systems of divergent type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 141-161. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/
[1] Adler V. E., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k probleme integriruemosti”, Teor. i matem. fiz., 125:3 (2000), 355–426 | MR
[2] Balakhnev M. Yu., “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, Teor. i matem. fiz., 142:1 (2005), 13–20 | MR | Zbl
[3] Balakhnev M. Yu., Kulemin I. V., , Differents. uravn. i protsessy upravleniya, no. 1, 2002 http://www.neva.ru/journal | MR
[4] Drinfeld V. G., Sokolov V. V., “Novye evolyutsionnye uravneniya, obladayuschie LA-paroi”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. sem. S. L. Soboleva, no. 2, In-t matematiki, Novosibirsk, 1981, 5–9 | MR
[5] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki, 24, VINITI, M., 1984, 81–180 | MR
[6] Meshkov A. G., “Instrumenty dlya simmetriinogo analiza differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravn. i protsessy upravleniya, , no. 1, 2002 http://www.neva.ru/journal | Zbl
[7] Meshkov A. G., Sokolov V. V., “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, Teor. i matem. fiz., 139:2 (2004), 192–208 | MR | Zbl
[8] Mikhailov A. V., Shabat A. B., Sokolov V. V., “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, eds. V. G. Bakhtaryara, V. E. Zakharova, V. M. Chernousenko, Naukova dumka, Kiev, 1990, 213–279 | MR
[9] Svinolupov S. I., Sokolov V. V., “Deformatsii iordanovykh troinykh sistem i integriruemye uravneniya”, Teor. i matem. fiz., 108:3 (1996), 388–392 | MR | Zbl
[10] Sokolov V. V., Svinolupov S. I., “Vektorno-matrichnye obobscheniya klassicheskikh integriruemykh uravnenii”, Teor. i matem. fiz., 100:2 (1994), 214–218 \language=0 | MR | Zbl
[11] Chen H. H., Lee Y. C., Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20:3–4 (1979), 490–492 | DOI | MR | Zbl
[12] Fuchssteiner B., Fokas A.,S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Physica D, 4:1 (1981), 47–66 | DOI | MR | Zbl
[13] Hirota R., Satsuma J., “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85:8 (1981), 407–408 | DOI | MR
[14] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR
[15] Kulemin I. V., Meshkov A. G., “To the classification of integrable systems in $1+1$ dimensions”, Symmetry in Nonlinear Mathematical Physics. Proc. 2nd Int. Conf. (Kyiv, Ukraine, July 7–13, 1997), Kyiv: Ukr. Inst. Math., eds. M. Shkil, A. Nikitin, V. Boyko, 1997, 115–121 | MR | Zbl
[16] Meshkov A. G., “Necessary conditions of the integrability”, Inverse Problems, 10:3 (1994), 635–653 | DOI | MR | Zbl
[17] Meshkov A. G., “Integrability and integrodifferential substitutions”, J. Math. Phys., 38:12 (1997), 6428–6443 | DOI | MR | Zbl
[18] Meshkov A. G., Balakhnev M. Yu., “Integrable anisotropic evolution equations on a sphere”, Symmetry, Integrability and Geometry: Methods and Applications, 1 (2005), Paper 027, 11 pp. | MR | Zbl
[19] Meshkov A. G., Sokolov V. V., “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl
[20] Mikhailov A. V., Sokolov V. V., “Symmetries of differential equations and the problem of integrability”, Integrability, ed. A. V. Mikhailov, Princeton Univ. Press, 2003
[21] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193:2 (1998), 245–268 | DOI | MR | Zbl
[22] Olver P. J., Sokolov V. V., “Non-Abelian integrable systems of the derivative nonlinear Schrödinger type”, Inverse Problems, 14:6 (1998), L5–L8 | DOI | MR | Zbl
[23] Sokolov V. V., Svinolupov S. I., Wolf T., “On linearizable evolution equations of second order”, Phys. Lett. A, 163 (1992), 415–418 | DOI | MR
[24] Sokolov V. V., Wolf T., “Classification of integrable polynomial vector evolution equations //”, J. Phys. A, 34:49 (2001), 11139–11148 | DOI | MR | Zbl