On symmetry classification of third order evolutionary systems of divergent type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 141-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

A symmetry classification is presented for integrable two-field third-order evolutionary systems of divergent type. The list contains thirteen exactly integrable systems. For eleven of them, differential substitutions that relate the systems with the known systems by Drinfeld–Sokolov, Ito, and Hirota–Satsuma are found. The two remaining systems seem to be new.
@article{FPM_2006_12_7_a10,
     author = {A. G. Meshkov},
     title = {On symmetry classification of third order evolutionary systems of divergent type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {141--161},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/}
}
TY  - JOUR
AU  - A. G. Meshkov
TI  - On symmetry classification of third order evolutionary systems of divergent type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 141
EP  - 161
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/
LA  - ru
ID  - FPM_2006_12_7_a10
ER  - 
%0 Journal Article
%A A. G. Meshkov
%T On symmetry classification of third order evolutionary systems of divergent type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 141-161
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/
%G ru
%F FPM_2006_12_7_a10
A. G. Meshkov. On symmetry classification of third order evolutionary systems of divergent type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 141-161. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a10/

[1] Adler V. E., Shabat A. B., Yamilov R. I., “Simmetriinyi podkhod k probleme integriruemosti”, Teor. i matem. fiz., 125:3 (2000), 355–426 | MR

[2] Balakhnev M. Yu., “Ob odnom klasse integriruemykh evolyutsionnykh vektornykh uravnenii”, Teor. i matem. fiz., 142:1 (2005), 13–20 | MR | Zbl

[3] Balakhnev M. Yu., Kulemin I. V., , Differents. uravn. i protsessy upravleniya, no. 1, 2002 http://www.neva.ru/journal | MR

[4] Drinfeld V. G., Sokolov V. V., “Novye evolyutsionnye uravneniya, obladayuschie LA-paroi”, Differentsialnye uravneniya s chastnymi proizvodnymi, Tr. sem. S. L. Soboleva, no. 2, In-t matematiki, Novosibirsk, 1981, 5–9 | MR

[5] Drinfeld V. G., Sokolov V. V., “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovr. probl. matematiki, 24, VINITI, M., 1984, 81–180 | MR

[6] Meshkov A. G., “Instrumenty dlya simmetriinogo analiza differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravn. i protsessy upravleniya, , no. 1, 2002 http://www.neva.ru/journal | Zbl

[7] Meshkov A. G., Sokolov V. V., “Klassifikatsiya integriruemykh divergentnykh $N$-komponentnykh evolyutsionnykh sistem”, Teor. i matem. fiz., 139:2 (2004), 192–208 | MR | Zbl

[8] Mikhailov A. V., Shabat A. B., Sokolov V. V., “Simmetriinyi podkhod k klassifikatsii integriruemykh uravnenii”, Integriruemost i kineticheskie uravneniya dlya solitonov, eds. V. G. Bakhtaryara, V. E. Zakharova, V. M. Chernousenko, Naukova dumka, Kiev, 1990, 213–279 | MR

[9] Svinolupov S. I., Sokolov V. V., “Deformatsii iordanovykh troinykh sistem i integriruemye uravneniya”, Teor. i matem. fiz., 108:3 (1996), 388–392 | MR | Zbl

[10] Sokolov V. V., Svinolupov S. I., “Vektorno-matrichnye obobscheniya klassicheskikh integriruemykh uravnenii”, Teor. i matem. fiz., 100:2 (1994), 214–218 \language=0 | MR | Zbl

[11] Chen H. H., Lee Y. C., Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20:3–4 (1979), 490–492 | DOI | MR | Zbl

[12] Fuchssteiner B., Fokas A.,S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Physica D, 4:1 (1981), 47–66 | DOI | MR | Zbl

[13] Hirota R., Satsuma J., “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85:8 (1981), 407–408 | DOI | MR

[14] Ito M., “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91 (1982), 335–338 | DOI | MR

[15] Kulemin I. V., Meshkov A. G., “To the classification of integrable systems in $1+1$ dimensions”, Symmetry in Nonlinear Mathematical Physics. Proc. 2nd Int. Conf. (Kyiv, Ukraine, July 7–13, 1997), Kyiv: Ukr. Inst. Math., eds. M. Shkil, A. Nikitin, V. Boyko, 1997, 115–121 | MR | Zbl

[16] Meshkov A. G., “Necessary conditions of the integrability”, Inverse Problems, 10:3 (1994), 635–653 | DOI | MR | Zbl

[17] Meshkov A. G., “Integrability and integrodifferential substitutions”, J. Math. Phys., 38:12 (1997), 6428–6443 | DOI | MR | Zbl

[18] Meshkov A. G., Balakhnev M. Yu., “Integrable anisotropic evolution equations on a sphere”, Symmetry, Integrability and Geometry: Methods and Applications, 1 (2005), Paper 027, 11 pp. | MR | Zbl

[19] Meshkov A. G., Sokolov V. V., “Integrable evolution equations on the $N$-dimensional sphere”, Comm. Math. Phys., 232:1 (2002), 1–18 | DOI | MR | Zbl

[20] Mikhailov A. V., Sokolov V. V., “Symmetries of differential equations and the problem of integrability”, Integrability, ed. A. V. Mikhailov, Princeton Univ. Press, 2003

[21] Olver P. J., Sokolov V. V., “Integrable evolution equations on associative algebras”, Comm. Math. Phys., 193:2 (1998), 245–268 | DOI | MR | Zbl

[22] Olver P. J., Sokolov V. V., “Non-Abelian integrable systems of the derivative nonlinear Schrödinger type”, Inverse Problems, 14:6 (1998), L5–L8 | DOI | MR | Zbl

[23] Sokolov V. V., Svinolupov S. I., Wolf T., “On linearizable evolution equations of second order”, Phys. Lett. A, 163 (1992), 415–418 | DOI | MR

[24] Sokolov V. V., Wolf T., “Classification of integrable polynomial vector evolution equations //”, J. Phys. A, 34:49 (2001), 11139–11148 | DOI | MR | Zbl