Integrable systems of chiral type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new integrable systems close to the WZNW systems (Wess–Zumino–Novikov–Witten) and to the nonabelian affine Toda systems. One of the systems is a new integrable generalization of the sine-Gordon equation.
@article{FPM_2006_12_7_a1,
     author = {A. V. Balandin and O. N. Kashcheeva},
     title = {Integrable systems of chiral type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/}
}
TY  - JOUR
AU  - A. V. Balandin
AU  - O. N. Kashcheeva
TI  - Integrable systems of chiral type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 5
EP  - 21
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/
LA  - ru
ID  - FPM_2006_12_7_a1
ER  - 
%0 Journal Article
%A A. V. Balandin
%A O. N. Kashcheeva
%T Integrable systems of chiral type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 5-21
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/
%G ru
%F FPM_2006_12_7_a1
A. V. Balandin; O. N. Kashcheeva. Integrable systems of chiral type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 5-21. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/

[1] Balandin A. V., “Sistema differentsialnykh uravnenii, dopuskayuschaya predstavlenie nulevoi krivizny”, Uspekhi mat. nauk, 45:6 (276) (1990), 125–126 | MR | Zbl

[2] Getmanov B. S., “Integriruemaya dvumernaya lorents-invariantnaya nelineinaya model kompleksnogo skalyarnogo polya”, Teor. i matem. fiz., 48:1 (1981), 13–23 | MR

[3] Demskoi D. K., Meshkov A. G., “Predstavlenie Laksa dlya tripleta skalyarnykh polei”, Teor. i matem. fiz., 134:3 (2003), 401 | MR | Zbl

[4] Zakharov E. V., Mikhailov A. V., “Relyativistski-invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi”, ZhETF, 74 (1978), 1953–1973 | MR

[5] Novikov S P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, Uspekhi mat. nauk, 37:5 (227) (1982), 3–49 | MR | Zbl

[6] Trofimov V. V., Vvedenie v geometriyu mnogoobrazii s simmetriyami., Izd-vo Mosk. un-ta, M., 1989 | MR

[7] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[8] Balandin A. V., Pakhareva O. N., Potemin G. V., “Lax representation of the chiral-type field equations”, Phys. Lett. A, 283:3–4 (2001), 168–176 | DOI | MR | Zbl

[9] Bilal A., “Non-abelian Toda theory: A completely integrable model for strings on a black hole background”, Nuclear Phys. B, 422:1–2 (1994), 258–288 | DOI | MR | Zbl

[10] Demskoi D. K., Meshkov A. G., “Zero-curvature representation for a chiral-type three-field system”, Inverse Problems, 19:3 (2003), 563–571 | DOI | MR | Zbl

[11] Dijkgraaf R., Verlinde H. L., Verlinde E. P., “String propagation in a black hole geometry”, Nuclear Phys. B, 371 (1992), 269–314 | DOI | MR

[12] Gawedzki K., Kupiainen A., “G/H conformal field theory from gauged WZW model”, Phys. Lett. B, 215 (1988), 119–123 | DOI | MR

[13] Hollowood T. J., Miramontes J. L., Han Park Q., “Massive integrable soliton theories”, Nuclear Phys. B, 445 (1995), 451–468 | DOI | MR | Zbl

[14] Leznov A. N., Saveliev M. V., “Two-dimensional exactly and completely integrable dynamical systems. Monopoles, instantons, dual models, relativistic strings, Lund–Regge model, generalized Toda lattice, etc.”, Commun. Math. Phys., 89:1 (1983), 59–75 | DOI | MR | Zbl

[15] Wess J., Zumino B., “Consequences of anomalos ward identities”, Phys. Lett. B, 37 (1971), 95–97 | DOI | MR

[16] Witten E., “Nonabelian bosonization in two-dimensions”, Commun. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[17] Witten E., “On string theory and black holes”, Phys. Rev. D, 44 (1991), 314–324 | DOI | MR | Zbl