Integrable systems of chiral type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We present new integrable systems close to the WZNW systems (Wess–Zumino–Novikov–Witten) and to the nonabelian affine Toda systems. One of the systems is a new integrable generalization of the sine-Gordon equation.
@article{FPM_2006_12_7_a1,
     author = {A. V. Balandin and O. N. Kashcheeva},
     title = {Integrable systems of chiral type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {12},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/}
}
TY  - JOUR
AU  - A. V. Balandin
AU  - O. N. Kashcheeva
TI  - Integrable systems of chiral type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 5
EP  - 21
VL  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/
LA  - ru
ID  - FPM_2006_12_7_a1
ER  - 
%0 Journal Article
%A A. V. Balandin
%A O. N. Kashcheeva
%T Integrable systems of chiral type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 5-21
%V 12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/
%G ru
%F FPM_2006_12_7_a1
A. V. Balandin; O. N. Kashcheeva. Integrable systems of chiral type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 7, pp. 5-21. http://geodesic.mathdoc.fr/item/FPM_2006_12_7_a1/