The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 115-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the mixed problem for Laplace's equation outside cuts in a plane. The Dirichlet boundary condition is posed on one side of each cut, and the skew derivative condition is posed on the other side. This problem generalizes the mixed Dirichlet–Neumann problem. Using the method of potentials, this problem is reduced to a uniquely solvable Fredholm integral equation of the second kind.
@article{FPM_2006_12_6_a7,
     author = {P. A. Krutitskii and A. I. Sgibnev},
     title = {The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {115--135},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/}
}
TY  - JOUR
AU  - P. A. Krutitskii
AU  - A. I. Sgibnev
TI  - The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 115
EP  - 135
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/
LA  - ru
ID  - FPM_2006_12_6_a7
ER  - 
%0 Journal Article
%A P. A. Krutitskii
%A A. I. Sgibnev
%T The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 115-135
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/
%G ru
%F FPM_2006_12_6_a7
P. A. Krutitskii; A. I. Sgibnev. The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 115-135. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/

[1] Gabov S. A., “Uglovoi potentsial i ego nekotorye prilozheniya”, Mat. sb., 103 (145):4 (1977), 490–504 | MR | Zbl

[2] Gosteva A. S., Krutitskaya N. Ch., Krutitskii P. A., “Smeshannaya zadacha v zamagnichennoi poluprovodnikovoi plenke s razrezami vdol pryamoi”, Fundament. i prikl. mat., 6:4 (2000), 1061–1073 | MR | Zbl

[3] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[4] Krutitskii P. A., “Zadacha Dirikhle dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, ZhVM i MF, 34:8–9 (1994), 1237–1258 | MR | Zbl

[5] Krutitskii P. A., “Zadacha Neimana dlya uravneniya Gelmgoltsa vne razrezov na ploskosti”, ZhVM i MF, 34:11 (1994), 1652–1665 | MR | Zbl

[6] Krutitskii P. A., “Smeshannaya zadacha dlya uravneniya Laplasa vne razrezov na ploskosti”, Differents. uravn., 33:9 (1997), 1181–1190 | MR | Zbl

[7] Krutitskii P. A., Sgibnev A. I., “Metod integralnykh uravnenii v smeshannoi zadache Dirikhle–Neimana dlya uravneniya Laplasa vne razrezov na ploskosti”, Differents. uravn., 37:10 (2001), 1299–1310 | MR | Zbl

[8] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment, TOO “Yanus”, M., 1995 | MR | Zbl

[9] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl

[10] Funktsionalnyi analiz, ed. G. Krein, Nauka, M., 1964