The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 115-135
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the mixed problem for Laplace's equation outside cuts in a plane. The Dirichlet boundary condition is posed on one side of each cut, and the skew derivative condition is posed on the other side. This problem generalizes the mixed Dirichlet–Neumann problem. Using the method of potentials, this problem is reduced to a uniquely solvable Fredholm integral equation of the second kind.
@article{FPM_2006_12_6_a7,
author = {P. A. Krutitskii and A. I. Sgibnev},
title = {The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {115--135},
publisher = {mathdoc},
volume = {12},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/}
}
TY - JOUR AU - P. A. Krutitskii AU - A. I. Sgibnev TI - The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 115 EP - 135 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/ LA - ru ID - FPM_2006_12_6_a7 ER -
%0 Journal Article %A P. A. Krutitskii %A A. I. Sgibnev %T The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 115-135 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/ %G ru %F FPM_2006_12_6_a7
P. A. Krutitskii; A. I. Sgibnev. The method of integral equations for the mixed problem with the skew derivative for harmonic functions outside cuts in a~plane. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 115-135. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a7/