Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_6_a4, author = {A. Du and J. Duan and H. Gao and T. \"Ozg\"okmen}, title = {Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {67--84}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/} }
TY - JOUR AU - A. Du AU - J. Duan AU - H. Gao AU - T. Özgökmen TI - Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 67 EP - 84 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/ LA - ru ID - FPM_2006_12_6_a4 ER -
%0 Journal Article %A A. Du %A J. Duan %A H. Gao %A T. Özgökmen %T Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 67-84 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/ %G ru %F FPM_2006_12_6_a4
A. Du; J. Duan; H. Gao; T. Özgökmen. Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/
[1] Arnold L., Random Dynamical Systems, Springer, New York, 1998 | MR
[2] Chen F., Ghil M., “Interdecadal variability in a hybrid coupled ocean-atmosphere model”, J. Phy. Oceanography, 26 (1996), 1561–1578 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[3] Chueshov I. D., Duan J., Schmalfu B., “Probabilistic dynamics of two-layer geophysical flows”, Stoch. Dyn., 1:4 (2001), 451–476 | DOI | MR
[4] Chueshov I. D., Scheutzow M., “Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations”, J. Dynam. Differential Equations, 13 (2001), 355–380 | DOI | MR | Zbl
[5] Crauel H., Flandoli F., “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations, 10 (1998), 449–474 | DOI | MR | Zbl
[6] Debussche A., “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl., 9 (1998), 967–988 | MR | Zbl
[7] DelSole T., Farrell B. F., “A stochastically excited linear system as a model for quasigeostrophic turbulence: Analytic results for one-and two-layer fluids”, J. Atmospheric Sci., 52 (1995), 2531–2547 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[8] Dijkstra H. A., Nonlinear Physical Oceanography, Kluwer Academic, Boston, 2000
[9] Duan J., Gao H., Schmalfuss B., “Stochastic dynamics of a coupled atmosphere-ocean model”, Stoch. Dyn., 2:3 (2002), 357–380 | DOI | MR | Zbl
[10] Egorov Yu. V., Shubin M. A., “Partial differential equations”, Encyclopedia of Mathematical Sciences, I, Springer, New York, 1991 | MR
[11] Flandoli F., Schmalfuss B., “Random attractors for the stochastic 3-D Navier–Stokes equation with multiplicative white noise”, Stochastics Stochastics Rep., 59, 1996, 21–45 | MR | Zbl
[12] Gao H. J., Duan J., “Averaging principle for quasi-geostrophic motion under rapidly oscillating forcing”, Appl. Math. Mech.
[13] Griffa A., Castellari S., “Nonlinear general circulation of an ocean model driven by wind with a stochastic component”, J. Marine Research, 49 (1991), 53–73 | DOI
[14] Holloway G., “Ocean circulation: Flow in probability under statistical dynamical forcing”, Stochastic Models in Geosystems, eds. S. Molchanov, W. Woyczynski, Springer, 1996 | MR
[15] Lions J.-L., Magenes E., Problémes aux limites non homogénes et applications, 1, 1968
[16] North G. R., Cahalan R. F., “Predictability in a solvable stochastic climate model”, J. Atmospheric Sci., 38 (1981), 504–513 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[17] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimension, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl
[18] Da Prato G., Zabczyk J., Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[19] Schmalfuss B., “Invariant attracting sets of nonlinear stochastic differential equations”, ISAM Seminar–Gau{\fontfamily{cmr}\selectfont ßig., 54, eds. H. Langer,V. Nollau, Akademie, 1989, 217–228 | MR
[20] Schmalfuss B., “Long-time behaviour of the stochastic Navier–Stokes equation”, Math. Nachr., 152 (1991), 7–20 | DOI | MR | Zbl
[21] Schmalfuss B., “A random fixed point theorem and the random graph transformation”, J. Math. Anal. Appl., 225:1 (1998), 91–113 | DOI | MR | Zbl
[22] Temam R., CBMS–NSF Regional Conf. Ser. in Appl. Math., 66, SIAM, Philadelphia, 1983 | MR
[23] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1997 | MR