Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 67-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors consider a mathematical model for the coupled atmosphere-ocean system, namely, the coupled quasigeostrophic flow-energy balance model. This model consists of the large scale quasigeostrophic oceanic flow model and the transport equation for oceanic temperature, coupled with an atmospheric energy balance model. After reformulating this coupled model as a random dynamical system (with the cocycle property), it is shown that the coupled quasigeostrophic-energy balance fluid system has a random attractor, and under further conditions on the physical data and the covariance of the noise, the system is ergodic, namely, for any observable of the coupled atmosphere-ocean flows, its time average approximates the statistical ensemble average, provided the time interval is sufficiently long.
@article{FPM_2006_12_6_a4,
     author = {A. Du and J. Duan and H. Gao and T. \"Ozg\"okmen},
     title = {Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/}
}
TY  - JOUR
AU  - A. Du
AU  - J. Duan
AU  - H. Gao
AU  - T. Özgökmen
TI  - Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 67
EP  - 84
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/
LA  - ru
ID  - FPM_2006_12_6_a4
ER  - 
%0 Journal Article
%A A. Du
%A J. Duan
%A H. Gao
%A T. Özgökmen
%T Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 67-84
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/
%G ru
%F FPM_2006_12_6_a4
A. Du; J. Duan; H. Gao; T. Özgökmen. Ergodic dynamics of the coupled quasigeostrophic flow-energy balance system. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 67-84. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a4/

[1] Arnold L., Random Dynamical Systems, Springer, New York, 1998 | MR

[2] Chen F., Ghil M., “Interdecadal variability in a hybrid coupled ocean-atmosphere model”, J. Phy. Oceanography, 26 (1996), 1561–1578 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Chueshov I. D., Duan J., Schmalfu B., “Probabilistic dynamics of two-layer geophysical flows”, Stoch. Dyn., 1:4 (2001), 451–476 | DOI | MR

[4] Chueshov I. D., Scheutzow M., “Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations”, J. Dynam. Differential Equations, 13 (2001), 355–380 | DOI | MR | Zbl

[5] Crauel H., Flandoli F., “Hausdorff dimension of invariant sets for random dynamical systems”, J. Dynam. Differential Equations, 10 (1998), 449–474 | DOI | MR | Zbl

[6] Debussche A., “Hausdorff dimension of a random invariant set”, J. Math. Pures Appl., 9 (1998), 967–988 | MR | Zbl

[7] DelSole T., Farrell B. F., “A stochastically excited linear system as a model for quasigeostrophic turbulence: Analytic results for one-and two-layer fluids”, J. Atmospheric Sci., 52 (1995), 2531–2547 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[8] Dijkstra H. A., Nonlinear Physical Oceanography, Kluwer Academic, Boston, 2000

[9] Duan J., Gao H., Schmalfuss B., “Stochastic dynamics of a coupled atmosphere-ocean model”, Stoch. Dyn., 2:3 (2002), 357–380 | DOI | MR | Zbl

[10] Egorov Yu. V., Shubin M. A., “Partial differential equations”, Encyclopedia of Mathematical Sciences, I, Springer, New York, 1991 | MR

[11] Flandoli F., Schmalfuss B., “Random attractors for the stochastic 3-D Navier–Stokes equation with multiplicative white noise”, Stochastics Stochastics Rep., 59, 1996, 21–45 | MR | Zbl

[12] Gao H. J., Duan J., “Averaging principle for quasi-geostrophic motion under rapidly oscillating forcing”, Appl. Math. Mech.

[13] Griffa A., Castellari S., “Nonlinear general circulation of an ocean model driven by wind with a stochastic component”, J. Marine Research, 49 (1991), 53–73 | DOI

[14] Holloway G., “Ocean circulation: Flow in probability under statistical dynamical forcing”, Stochastic Models in Geosystems, eds. S. Molchanov, W. Woyczynski, Springer, 1996 | MR

[15] Lions J.-L., Magenes E., Problémes aux limites non homogénes et applications, 1, 1968

[16] North G. R., Cahalan R. F., “Predictability in a solvable stochastic climate model”, J. Atmospheric Sci., 38 (1981), 504–513 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] Da Prato G., Zabczyk J., Stochastic Equations in Infinite Dimension, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[18] Da Prato G., Zabczyk J., Ergodicity for Infinite Dimensional Systems, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[19] Schmalfuss B., “Invariant attracting sets of nonlinear stochastic differential equations”, ISAM Seminar–Gau{\fontfamily{cmr}\selectfont ßig., 54, eds. H. Langer,V. Nollau, Akademie, 1989, 217–228 | MR

[20] Schmalfuss B., “Long-time behaviour of the stochastic Navier–Stokes equation”, Math. Nachr., 152 (1991), 7–20 | DOI | MR | Zbl

[21] Schmalfuss B., “A random fixed point theorem and the random graph transformation”, J. Math. Anal. Appl., 225:1 (1998), 91–113 | DOI | MR | Zbl

[22] Temam R., CBMS–NSF Regional Conf. Ser. in Appl. Math., 66, SIAM, Philadelphia, 1983 | MR

[23] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1997 | MR