Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_6_a3, author = {V. G. Danilov and V. Yu. Rudnev}, title = {A~weak asymptotic solution of the phase-field system in the case of confluence of free boundaries in the {Stefan--Gibbs--Thomson} problem}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {49--66}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a3/} }
TY - JOUR AU - V. G. Danilov AU - V. Yu. Rudnev TI - A~weak asymptotic solution of the phase-field system in the case of confluence of free boundaries in the Stefan--Gibbs--Thomson problem JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 49 EP - 66 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a3/ LA - ru ID - FPM_2006_12_6_a3 ER -
%0 Journal Article %A V. G. Danilov %A V. Yu. Rudnev %T A~weak asymptotic solution of the phase-field system in the case of confluence of free boundaries in the Stefan--Gibbs--Thomson problem %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 49-66 %V 12 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a3/ %G ru %F FPM_2006_12_6_a3
V. G. Danilov; V. Yu. Rudnev. A~weak asymptotic solution of the phase-field system in the case of confluence of free boundaries in the Stefan--Gibbs--Thomson problem. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 49-66. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a3/
[1] Danilov V. G., Omelyanov G. A., Radkevich E. V., “Asimptoticheskoe reshenie sistemy fazovogo polya i modifitsirovannaya zadacha Stefana”, Differents. uravn., 31:3 (1995), 483–491 | MR | Zbl
[2] Meirmanov A. M., Zadacha Stefana, Nauka, Novosibirsk, 1986 | MR | Zbl
[3] Radkevich E. V., “Popravka Gibbsa–Tomsona i usloviya suschestvovaniya klassicheskogo resheniya modifitsirovannoi zadachi Stefana”, DAN SSSR, 316:6 (1991), 1311–1315 | MR | Zbl
[4] Caginalp G., “Stefan and Hele–Shaw type models as asymptotic limits of the phase-field equations”, Phys. Rev., 39 (1989), 5887–5896 | DOI | MR | Zbl
[5] Chen X., “Spectrum for the Allen–Cahn, Cahn–Hilliard and phase-field equations for generic interfaces”, Comm. Part. Different. Equations, 19:7 (1994), 1371–1395 | DOI | MR | Zbl
[6] Danilov V. G., “Propagation and interaction of shock waves of quasilinear equation”, Nonlinear Stud., 8:1 (2001), 211–245 | MR
[7] Danilov G., “Generalized solutions describing singularity interaction”, Int. J. Math. Math. Sci., 29:8 (2002), 481–494 | DOI | MR | Zbl
[8] Danilov V. G., Omel'yanov G. A., Radkevich E. V., “Hugo niot-type conditions and weak solutions to the phase-field system”, European J. Appl. Math., 10 (1999), 55–77 | DOI | MR | Zbl
[9] Danilov V. G., Omel'ynov G. A., Shelkovich V. M., “Weak asymptotics method and interaction of nonlinear waves”, Asymptotic Methods for Wave and Quantum Problems, Amer. Math. Soc. Transl., 208 (53), no. 2, ed. Karasev M. V., Amer. Math. Soc., Providence, 2003, 33–163 | MR | Zbl
[10] Danilov V. G., Shelkovich V. M., “Propagation and interaction of nonlinear waves”, Eighth Int. Conf. on Hyperbolic Problems, Theory-Numerics Applications, Abstracts (Magdeburg, Germany, February 28–March 3, 2000), 326–328
[11] Meirmanov A., Zaltzman B., “Global in time solution to the Hele–Shaw problem with a change of topology”, European J. Appl. Math., 13 (2002), 431–447 | DOI | MR | Zbl
[12] Omel'yanov G. A., “Dynamics and interaction of nonlinear waves: multidimensional case”, Int. Conf. “Differentional Equations and Related Topics”, dedicated to the centenary anniversary of I. G. Petrovskii., Book of abstracts. Izd. Mosk. Univ., 2001, 305–306