Birkhoff regularity in terms of the growth of the norm for the Green function
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 231-239
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the ordinary differential operator $L$ generated on $[0,1]$ by the differential expression
$$
l(y)=(-i)^ny^{(n)}(x)+p_2(x)y^{(n-2)}+\dots+p_{n-1}(x)y'+p_n(x)y
$$
and $n$ linearly independent homogeneous boundary conditions at the endpoints. We assume that the coefficients $p_k(x)$ are Lebesgue integrable complex functions. If the boundary conditions are Birkhoff regular, then the Green function $G(\lambda)$, being the kernel of the operator $(L-\lambda)^{-1}$, admits the asymptotic estimate (for sufficiently large $|\lambda|>c_0$)
$$
|G(\lambda)|\leq M|\lambda|^{\frac{-n+1}{n}},
$$
where $M=M(c_0)$ is a certain constant. In the present paper, we prove the converse assertion: the fulfillment of this estimate on some rays implies the regularity of the operator $L$.
@article{FPM_2006_12_6_a13,
author = {E. A. Shiryaev},
title = {Birkhoff regularity in terms of the growth of the norm for the {Green} function},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {231--239},
publisher = {mathdoc},
volume = {12},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a13/}
}
TY - JOUR AU - E. A. Shiryaev TI - Birkhoff regularity in terms of the growth of the norm for the Green function JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 231 EP - 239 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a13/ LA - ru ID - FPM_2006_12_6_a13 ER -
E. A. Shiryaev. Birkhoff regularity in terms of the growth of the norm for the Green function. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 231-239. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a13/