The Rankine--Hugoniot conditions and balance laws for $\delta$-shocks
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 213-229.

Voir la notice de l'article provenant de la source Math-Net.Ru

New definitions of $\delta$-shock wave-type solutions are introduced for two (one-dimensional) types of hyperbolic systems of conservation laws. Corresponding Rankine–Hugoniot conditions for $\delta$-shocks are derived, and their geometrical interpretation is given. Balance laws connected with “area,” mass, and momentum transportation for $\delta$-shocks are derived.
@article{FPM_2006_12_6_a12,
     author = {V. M. Shelkovich},
     title = {The {Rankine--Hugoniot} conditions and balance laws for $\delta$-shocks},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {213--229},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a12/}
}
TY  - JOUR
AU  - V. M. Shelkovich
TI  - The Rankine--Hugoniot conditions and balance laws for $\delta$-shocks
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 213
EP  - 229
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a12/
LA  - ru
ID  - FPM_2006_12_6_a12
ER  - 
%0 Journal Article
%A V. M. Shelkovich
%T The Rankine--Hugoniot conditions and balance laws for $\delta$-shocks
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 213-229
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a12/
%G ru
%F FPM_2006_12_6_a12
V. M. Shelkovich. The Rankine--Hugoniot conditions and balance laws for $\delta$-shocks. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 213-229. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a12/

[1] Volpert A. I., “Prostranstva $BV$ i kvazilineinye uravneniya”, Mat. sb., 73:2 (1967), 225–267 | MR

[2] Danilov V. G., Maslov V. P., Shelkovich V. M., “Algebry osobennostei singulyarnykh reshenii kvazilineinykh strogo giperbolicheskikh sistem pervogo poryadka”, Teor. i matem. fiz., 114:1 (1998), 3–55 | MR | Zbl

[3] Danilov V. G., Shelkovich V. M., “Rasprostranenie i vzaimodeistvie $\delta$-udarnykh voln giperbolicheskikh sistem zakonov sokhraneniya”, Dokl. RAN, 394:1 (2004), 10–14 | MR | Zbl

[4] Maslov V. P., “Tri algebry, otvechayuschie negladkim resheniyam sistem kvazilineinykh giperbolicheskikh uravnenii”, Uspekhi mat. nauk, 35:2 (1980), 252–253

[5] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[6] Bouchut F., “On zero pressure gas dynamics”, Adv. Math. Sci. Appl., 22 (1994), 171–190 | MR | Zbl

[7] Danilov V. G., Omel'yanov G. A., Shelkovich V. M., “Weak asymptotics method and interaction of nonlinear waves”, Asymptotic Methods for Wave and Quantum Problems, Amer. Math. Soc. Transl., 208, no. 2, ed. M. Karasev, Amer. Math. Soc., 2003, 33–165 | MR

[8] Danilov V. G., Shelkovich V. M., “Propagation and interaction of nonlinear waves to quasilinear equations”, Hyperbolic problems: Theory, Numerics, Applications (Eighth Int. Conf. in Magdeburg, February/March, 2000, V. I), Int. Series of Numerical Mathematics, 140, Birkhäuser, Basel, 2001, 267–276 | MR

[9] Danilov V. G., Shelkovich V. M., “Propagation and interaction of shock waves of quasilinear equation”, Nonlinear Stud., 8:1 (2001), 135–169 | MR | Zbl

[10] Danilov V. G., Shelkovich V. M., “Propagation and interaction of delta-shock waves of a hyperbolic system of conservation laws”, Hyperbolic Problems: Theory, Numerics, Applications (Proc. of the Ninth Int. Conf. on Hyperbolic Problems held in CalTech, Pasadena, March 25–29, 2002), eds. Hou Th. Y., Tadmor E., Springer, 2003, 483–492 | MR | Zbl

[11] Danilov V. G., Shelkovich V. M., “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Quart. Appl. Math., 63:3 (2005), 401–427 | MR

[12] Danilov V. G., Shelkovich V. M., “Dynamics of propagation and interaction of delta-shock waves in conservation law systems”, J. Differential Equations., 211 (2005), 333–381 | DOI | MR | Zbl

[13] Ercole G., “Delta-shock waves as self-similar viscosity limits”, Quart. Appl. Math., 58:1 (2000), 177–199 | MR | Zbl

[14] Joseph K. T., “A Riemann problem whose viscosity solutions contain $\delta$-measures”, Asymptotic Anal., 7 (1993), 105–120 | MR | Zbl

[15] Huang F., “Existence and uniqueness of discontinuous solutions for a class nonstrictly hyperbolic systems”, Advances in Nonlinear Partial Differential Equations and Related Areas (Proc. of Conf. Dedicated to Prof. Xiaqi Ding, China, 1997), ed. G.-Q. Chen et al., 187–208 | MR

[16] Keyfitz B. L., “Conservation laws, delta-shocks and singular shocks”, Nonlinear Theory of Generalized Functions, eds. M. Grosser, G. Hormann, M. Oberguggenberger, Chapman Hall/CRC, 1999, 99–112 | MR

[17] Keyfitz B. L., Kranzer H. C., “Spaces of weighted measures for conservation laws with singular shock solutions”, J. Differential Equations, 118 (1995), 420–451 | DOI | MR | Zbl

[18] Le Floch P., “An existence and uniqueness result for two nonstrictly hyperbolic systems”, Nonlinear Evolution Equations That Change Type, Springer, 1990, 126–138 | MR | Zbl

[19] Liu T.-P., Xin Zh., “Overcompressive shock waves”, Nonlinear Evolution Equations That Change Type, Springer, 1990, 139–145 | MR

[20] Maslov V. P., “Non-standard characteristics in asymptotical problems”, Proc. of the Int. Congress of Mathematicians (August 16–24, 1983, Warszawa), I, North-Holland, Amsterdam, 1984, 139–185 | MR

[21] Shandarin S. F., Zeldovich Ya. B., “The large-scale structure of the universe”, Turbulence, intermittence, strucrures in self-gravitating medium, 61, Rev. Modern Phys., 1989, 185–220 | MR

[22] Shelkovich V. M., “Delta-shock waves of a class of hyperbolic systems of conservation laws”, Patterns and Waves, eds. A. Abramian, S. Vakulenko, V. Volpert, AkademPrint, St. Petersburg, 2003, 155–168 | MR

[23] Shelkovich V. M., A specific hyperbolic system of conservation laws admitting delta-shock wave type solutions, http://www.math.ntnu.no/coservation/2003/059.html

[24] Sheng W., Zhang T., The Riemann Problem for the Transportaion Equations in Gas Dynamics, Mem. Amer. Math. Soc., 654, Amer. Math. Soc., 1999 | MR | Zbl

[25] Tan D., Zhang T., Zheng Y., “Delta-shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws”, J. Differential Equations, 112 (1994), 1–32 | DOI | MR | Zbl

[26] Weinan E., Rykov Yu., Sinai Ya. G., “Generalized variational principles, global weak solutions and behavior with random initial data for dystems of conservation laws arising in adhesion particlae dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl

[27] Yang H., “Riemann problems for class of coupled hyperbolic systems of conservation laws”, J. Differential Equations, 159 (1999), 447–484 | DOI | MR | Zbl

[28] Zeldovich Ya. B., “Gravitationnal instability”, Astronom. and Astrophys., 5 (1970), 84–89