Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_6_a11, author = {N. N. Shamarov}, title = {The {Maslov--Poisson} measure and {Feynman} formulas for the solution of the {Dirac} equation}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {193--211}, publisher = {mathdoc}, volume = {12}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/} }
TY - JOUR AU - N. N. Shamarov TI - The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 193 EP - 211 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/ LA - ru ID - FPM_2006_12_6_a11 ER -
N. N. Shamarov. The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 193-211. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/
[1] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, 2, Nauka, M, 1973 | MR | Zbl
[2] Egikyan R. S., Ktitarev D. V., “Formula Feinmana v fazovom prostranstve dlya sistem psevdodifferentsialnykh uravnenii s analiticheskimi simvolami”, Mat. zametki, 51:5 (1992), 44–50 | MR | Zbl
[3] Kvantovye sluchainye protsessy i otkrytye sistemy, Sb. statei, Matematika. Novoe v zarubezhnoi nauke, 42, ed. Kholevo A. S., M., 1982–1984
[4] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR
[5] Smolyanov O. G., Trumen A., “Uravneniya Shrëdingera–Belavkina i assotsiirovannye s nimi uravneniya Kolmogorova i Lindblada”, Teor. i matem. fiz., 120:2 (1999), 193–207 | MR | Zbl
[6] Smolyanov O. G., Fomin S. V., “Mery na lineinykh topologicheskikh prostranstvakh”, Uspekhi mat. nauk, 31:4 (1976), 3–56 | MR | Zbl
[7] Smolyanov O. G., Shavgulidze E. T., “Psevdodifferentsialnye operatory v superanalize”, Uspekhi mat. nauk, 41:4 (1986), 164–165
[8] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, Izd-vo Mosk. un-ta, M., 1990 | MR
[9] Smolyanov O. G., Shavgulidze E. T., “Prostoe dokazatelstvo teoremy Tarieladze o dostatochnosti polozhitelno dostatochnykh topologii”, Teoriya veroyatnostei i eë primeneniya, 37:2 (1992), 421–424 | MR
[10] Shamarov N. N., “Funktsionalnyi integral po schëtno-additivnoi mere, predstavlyayuschii reshenie uravneniya Diraka”, Tr. MMO, 66 (2005), 263–276 | MR | Zbl
[11] Davies E. B., One-Parameter Semigroups, Academic Press, London, 1980 | MR | Zbl
[12] Diestel J., Uhl J. J., jr., Vector Measures. Providence, Amer. Math. Soc., 1977 | MR | Zbl
[13] Robertson A. P., Robertson W., Topological Vector Spaces, Cambridge Univ. Press, Cambridge, 1980 | MR
[14] Shamarov N. N., “Matrix-valued cylindrical measures of Markov type and their Fourier transforms”, Russ. J. Math. Phys., 10:3 (2003), 1–15 | MR
[15] Smolyanov O. G., Weizsäcker H. V., Wittich O., “Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions”, Conference Proceedings (Conference dedicated to 60th birthday of S. Albeverio), Can. Math. Soc., 29, 2000, 589–602 | MR | Zbl
[16] Watanabe H., “Path integral for some systems of partial differential equations”, Proc. Japan Acad. Ser. A, 60 (1984), 86–89 | DOI | MR | Zbl
[17] Watanabe H., Ito Y., “A construction of the fundamental solution for the relativistic wave equation”, Tokyo J. Math., 7:1 (1983), 99–117 | DOI | MR