The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 193-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

As the main step, the method used by V. P. Maslov for representing a solution of the initial-value problem for the classical Schrödinger equation and admitting an application to the Dirac equation includes the construction of a cylindrical countably-additive measure (which is an analog of the Poisson distribution) on a certain space of functions (= trajectories in the impulse space) whose Fourier transform coincides with the factor in the formula representing the solution of the Schrödinger equation by the integral in the so-called cylindrical Feynman (pseudo)measure (in the trajectory space in the configurational space for the classical system). On the other hand, in the Maslov formula for the solution of the Schrödinger equation, the exponential factor is (with accuracy up to a shift) the Fourier transform of the Feynman pseudomeasure. In the case of the Dirac equation, historically, for the first time, there arise the formulas for the impulse representation that use countably-additive functional distributions of the Poisson–Maslov measure type but with noncommuting (matrix) values. The paper finds generalized measures whose Fourier transforms coincide with an analog of the exponential factor under the integral sign in the Maslov-type formula for the Dirac equation and the integrals with respect to which yield solutions of the Cauchy problem for this equation in the configurational space.
@article{FPM_2006_12_6_a11,
     author = {N. N. Shamarov},
     title = {The {Maslov--Poisson} measure and {Feynman} formulas for the solution of the {Dirac} equation},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/}
}
TY  - JOUR
AU  - N. N. Shamarov
TI  - The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 193
EP  - 211
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/
LA  - ru
ID  - FPM_2006_12_6_a11
ER  - 
%0 Journal Article
%A N. N. Shamarov
%T The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 193-211
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/
%G ru
%F FPM_2006_12_6_a11
N. N. Shamarov. The Maslov--Poisson measure and Feynman formulas for the solution of the Dirac equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 193-211. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a11/

[1] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, 2, Nauka, M, 1973 | MR | Zbl

[2] Egikyan R. S., Ktitarev D. V., “Formula Feinmana v fazovom prostranstve dlya sistem psevdodifferentsialnykh uravnenii s analiticheskimi simvolami”, Mat. zametki, 51:5 (1992), 44–50 | MR | Zbl

[3] Kvantovye sluchainye protsessy i otkrytye sistemy, Sb. statei, Matematika. Novoe v zarubezhnoi nauke, 42, ed. Kholevo A. S., M., 1982–1984

[4] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976 | MR

[5] Smolyanov O. G., Trumen A., “Uravneniya Shrëdingera–Belavkina i assotsiirovannye s nimi uravneniya Kolmogorova i Lindblada”, Teor. i matem. fiz., 120:2 (1999), 193–207 | MR | Zbl

[6] Smolyanov O. G., Fomin S. V., “Mery na lineinykh topologicheskikh prostranstvakh”, Uspekhi mat. nauk, 31:4 (1976), 3–56 | MR | Zbl

[7] Smolyanov O. G., Shavgulidze E. T., “Psevdodifferentsialnye operatory v superanalize”, Uspekhi mat. nauk, 41:4 (1986), 164–165

[8] Smolyanov O. G., Shavgulidze E. T., Kontinualnye integraly, Izd-vo Mosk. un-ta, M., 1990 | MR

[9] Smolyanov O. G., Shavgulidze E. T., “Prostoe dokazatelstvo teoremy Tarieladze o dostatochnosti polozhitelno dostatochnykh topologii”, Teoriya veroyatnostei i eë primeneniya, 37:2 (1992), 421–424 | MR

[10] Shamarov N. N., “Funktsionalnyi integral po schëtno-additivnoi mere, predstavlyayuschii reshenie uravneniya Diraka”, Tr. MMO, 66 (2005), 263–276 | MR | Zbl

[11] Davies E. B., One-Parameter Semigroups, Academic Press, London, 1980 | MR | Zbl

[12] Diestel J., Uhl J. J., jr., Vector Measures. Providence, Amer. Math. Soc., 1977 | MR | Zbl

[13] Robertson A. P., Robertson W., Topological Vector Spaces, Cambridge Univ. Press, Cambridge, 1980 | MR

[14] Shamarov N. N., “Matrix-valued cylindrical measures of Markov type and their Fourier transforms”, Russ. J. Math. Phys., 10:3 (2003), 1–15 | MR

[15] Smolyanov O. G., Weizsäcker H. V., Wittich O., “Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions”, Conference Proceedings (Conference dedicated to 60th birthday of S. Albeverio), Can. Math. Soc., 29, 2000, 589–602 | MR | Zbl

[16] Watanabe H., “Path integral for some systems of partial differential equations”, Proc. Japan Acad. Ser. A, 60 (1984), 86–89 | DOI | MR | Zbl

[17] Watanabe H., Ito Y., “A construction of the fundamental solution for the relativistic wave equation”, Tokyo J. Math., 7:1 (1983), 99–117 | DOI | MR