Elementary rotations of operators in regular Banach spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 175-192

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the existence of an elementary rotation (a Julia operator) for any continuous linear adjointable operator in a regular Banach space with inner product. The proof is based on a more general theorem of the same author about the existence of an elementary rotation for any linear operator in a category with quadratic splitting. This result is a generalization of a well-known result about the existence of an elementary rotation for any continuous linear operator in a Krein space. The result can be useful for constructing isometric and unitary dilations as well as characteristic functions of continuous linear operators acting in regular Banach spaces with inner product.
@article{FPM_2006_12_6_a10,
     author = {D. L. Tyshkevich},
     title = {Elementary rotations of operators in regular {Banach} spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--192},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/}
}
TY  - JOUR
AU  - D. L. Tyshkevich
TI  - Elementary rotations of operators in regular Banach spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 175
EP  - 192
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/
LA  - ru
ID  - FPM_2006_12_6_a10
ER  - 
%0 Journal Article
%A D. L. Tyshkevich
%T Elementary rotations of operators in regular Banach spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 175-192
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/
%G ru
%F FPM_2006_12_6_a10
D. L. Tyshkevich. Elementary rotations of operators in regular Banach spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 175-192. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/