Elementary rotations of operators in regular Banach spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 175-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the existence of an elementary rotation (a Julia operator) for any continuous linear adjointable operator in a regular Banach space with inner product. The proof is based on a more general theorem of the same author about the existence of an elementary rotation for any linear operator in a category with quadratic splitting. This result is a generalization of a well-known result about the existence of an elementary rotation for any continuous linear operator in a Krein space. The result can be useful for constructing isometric and unitary dilations as well as characteristic functions of continuous linear operators acting in regular Banach spaces with inner product.
@article{FPM_2006_12_6_a10,
     author = {D. L. Tyshkevich},
     title = {Elementary rotations of operators in regular {Banach} spaces},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--192},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/}
}
TY  - JOUR
AU  - D. L. Tyshkevich
TI  - Elementary rotations of operators in regular Banach spaces
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 175
EP  - 192
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/
LA  - ru
ID  - FPM_2006_12_6_a10
ER  - 
%0 Journal Article
%A D. L. Tyshkevich
%T Elementary rotations of operators in regular Banach spaces
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 175-192
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/
%G ru
%F FPM_2006_12_6_a10
D. L. Tyshkevich. Elementary rotations of operators in regular Banach spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 175-192. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a10/

[1] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka 1986, M. | MR

[2] Aronshain R., sb. perevodov, Matematika, 8, no. 5, 1964

[3] Bukur I., Delyanu A., Vvedenie v teoriyu kategorii i funktorov, Mir, M., 1972 | MR

[4] Goldblatt R., Toposy. Kategornyi analiz logiki, Mir, M., 1983 | MR | Zbl

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnye operatory, Mir, M., 1974

[6] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[7] Tyshkevich D. L., “O klassakh sopryagaemykh operatorov v obschikh prostranstvakh s indefinitnoi metrikoi”, Uchënye zapiski Tavricheskogo natsionalnogo un-ta im. V. I. Vernadskogo, 15 (54), no. 2, 2002, 95–98

[8] Tyshkevich D. L., “Elementarnye rotatsii operatorov v kategoriyakh s kvadratichnym rasschepleniem”, Tavricheskii vestn. matematiki i informatiki, 2004, no. 1, 112–124 | MR | Zbl

[9] Khoruzhii S. S., Vvedenie v algebraicheskuyu kvantovuyu teoriyu polya, Nauka, M., 1986 | MR

[10] Shtraus V. A., Nekotorye voprosy geometrii i spektralnoi teorii operatorov v banakhovykh prostranstvakh s ermitovoi formoi, Dis. kand. fiz.-mat. nauk, Voronezh, 1972

[11] Shtraus V. A., Modelnoe predstavlenie i funktsionalnoe ischislenie operatorov v prostranstvakh s indefinitnoi metrikoi, Dis. dokt. fiz.-mat. nauk (variant), Chelyabinsk, 1993 | Zbl

[12] Bognar J., Kramli A., “Operators of the form $C^*C$ in indefinite inner product spaces”, Acta Sci. Math. (Szeged), 29 (1968), 19–29 | MR | Zbl

[13] Bognar J., Indefinite Inner Product Spaces, Springer, Berlin, 1974 | MR | Zbl

[14] Categories Home Page, http://www.mta.ca/c̃at-dist

[15] Constantinescu T., http://www.utdallas.edu/t̃iberiu

[16] Dritschel M. A., Rovnyak J., “Operators on indefinite inner product spaces”, Lectures on operator theory and its applications (Waterloo, ON, 1994), Fields Institute Monographs, 3, Amer. Math. Soc., Providence, RI, 1996, 141–232 | MR

[17] Dritshel M. A., http:/!/www.math.purdue.edu/m̃ad

[18] E-print service, arXiv.org

[19] Maclane S., Categories for the Working Mathematician, 5, Springer, 1971 | MR

[20] McEnnis B. W., “Shifts on indefinite inner product spaces”, Pacific J. Math., 81:1 (1979), 113–130 | MR | Zbl

[21] Mnatsakanova M., Morchio G., Strocchi F., Vernov Yu. S., Irreducible representations of the Heisenberg algebra in Krein spaces, Preprint IFUP-TH 70/95, Pisa, 1995 | MR

[22] Rovnyak J., http://www.people.virginia.edu/ ̃ jlr5m