Function integrals corresponding to a~solution of the Cauchy--Dirichlet problem for the heat equation in a~domain of a~Riemannian manifold
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

A solution of the Cauchy–Dirichlet problem is represented as the limit of a sequence of integrals over finite Cartesian powers of the domain of a manifold considered. It is shown that these limits coincide with the integrals with respect to surface measures of the Gauss type on the set of trajectories in the manifold. Moreover, each of the integrands is a combination of elementary functions of the coefficients of the equation considered and geometric characteristics of the manifold. Also, a solution of the Cauchy–Dirichlet problem in the domain of the manifold is represented as the limit of a solution of the Cauchy problem for the heat equation on the whole manifold under infinite growth of the absolute value of the potential outside the domain. The proof uses some asymptotic estimates for Gaussian integrals over Riemannian manifolds and the Chernoff theorem.
@article{FPM_2006_12_6_a0,
     author = {Ya. A. Butko},
     title = {Function integrals corresponding to a~solution of the {Cauchy--Dirichlet} problem for the heat equation in a~domain of {a~Riemannian} manifold},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a0/}
}
TY  - JOUR
AU  - Ya. A. Butko
TI  - Function integrals corresponding to a~solution of the Cauchy--Dirichlet problem for the heat equation in a~domain of a~Riemannian manifold
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 3
EP  - 15
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a0/
LA  - ru
ID  - FPM_2006_12_6_a0
ER  - 
%0 Journal Article
%A Ya. A. Butko
%T Function integrals corresponding to a~solution of the Cauchy--Dirichlet problem for the heat equation in a~domain of a~Riemannian manifold
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 3-15
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a0/
%G ru
%F FPM_2006_12_6_a0
Ya. A. Butko. Function integrals corresponding to a~solution of the Cauchy--Dirichlet problem for the heat equation in a~domain of a~Riemannian manifold. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 6, pp. 3-15. http://geodesic.mathdoc.fr/item/FPM_2006_12_6_a0/

[1] Butko Ya. A., “Funktsionalnye integraly dlya uravneniya Shrëdingera v kompaktnom rimanovom mnogoobrazii”, Mat. zametki, 79:2 (2006), 194–200 | MR | Zbl

[2] Smolyanov O. G., fon Vaitszekker Kh., Vittikh O., “Diffuziya na kompaktnom rimanovom mnogoobrazii i poverkhnostnye mery”, Dokl. RAN, 371:4 (2000), 442–447 | MR | Zbl

[3] Smolyanov O. G., fon Vaitszekker Kh., Vittikh O., “Poverkhnostnye mery na traektoriyakh v rimanovykh mnogoobraziyakh, porozhdaemye diffuziyami”, Dokl. RAN, 377:4 (2001), 441–446 | MR | Zbl

[4] Smolyanov O. G., fon Vaitszekker Kh., Vittikh O., “Poverkhnostnye mery Vinera na traektoriyakh v rimanovykh mnogoobraziyakh”, Dokl. RAN, 383:4 (2002), 458–463 | MR | Zbl

[5] Smolyanov O. G., Trumen A., “Integraly Feinmana po traektoriyam v rimanovykh mnogoobraziyakh”, Dokl. RAN, 392:2 (2003), 174–179 | MR | Zbl

[6] Andersson L., Driver B. K., “Finite dimensional approximations to Wiener measure and path integral formulas on manifolds”, J. Funct. Anal., 165:2 (1999), 430–498 | DOI | MR | Zbl

[7] Butko Ya. A., “Representations of the solution of the Cauchy–Dirichlet problem for the heat equation in a domain on a compact Riemannian manifold by functional integrals”, Russian J. Math. Phys., 11:2 (2004), 1–7 | MR

[8] Chernoff R. P., “Note on product formulas for operator semigroups”, J. Funct. Anal., 2 (1968), 238–242 | DOI | MR | Zbl

[9] Chernoff R. P., “Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators”, Mem. Amer. Math. Soc., Amer. Math. Soc., 140 (1974) | MR | Zbl

[10] Obrezkov O. O., “The proof of the Feynman–Kac formula for heat equation on a compact Riemannian manifold”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6:2 (2003), 311–320 | DOI | MR | Zbl

[11] Sidorova N. A., “The Smolyanov surface measure on trajectories in a Riemannian manifold”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 461–472 | DOI | MR

[12] Smolyanov O. G., Tokarev A. G., Truman A., “Hamiltonian Feynman path integrals via the Chernoff formula”, J. Math. Phys., 43:10 (2002), 5161–5171 | DOI | MR | Zbl

[13] Smolyanov O. G., von Weizsäcker H., Wittich O., “Brownian motion on a manifold as limit of stepwise conditioned standart Brownian motions”, Stochastic Processes, Physics and Geometry: New Interplays. II, A volume in honor of Sergio Albeverio (Proc. of the Conf. on Infinite Dimensional (Stochastic) Analysis and Quantum Physics, Leipzig, Germany, January 18–22, 1999), 29, ed. F. Gesztesy, Amer. Math. Soc., Providence, 2000, 589–602 | MR | Zbl

[14] Smolyanov O. G., von Weizsäcker H., Wittich O., “Chernoff's theorem and the construction of semigroups”, Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Proc. of the 7th Int. Conf. on Evolution Equations and Their Applications, EVEQ2000 conference, Levico Terme, Italy, October 30–November 4, 2000), ed. M. Ianelli, Birkhäuser, Basel, 2003, 349–358 | MR | Zbl

[15] Smolyanov O. G., von Weizsäcker H., Wittich O., Chernoff's theorem and discrete time approximations of Brownian motion on manifolds, , 2004 arXiv: math.PR/0409155