@article{FPM_2006_12_5_a9,
author = {M. Yu. Neklyudov},
title = {Equivalence of {Navier{\textendash}Stokes} equation and infinite-dimensional {Burgers} equation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {109--120},
year = {2006},
volume = {12},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a9/}
}
M. Yu. Neklyudov. Equivalence of Navier–Stokes equation and infinite-dimensional Burgers equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 109-120. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a9/
[1] Ikeda N., Vatanabe S., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl
[2] Levi P., Konkretnye problemy funktsionalnogo analiza, Nauka, M., 1967 | MR
[3] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR
[4] Accardi L., Gibilisco P., Volovich I., “Yang–Mills gauge fields as harmonic functions for the Lévy Laplacian”, Russian J. Math. Phys., 2:2 (1994), 235–251 | MR
[5] Accardi L., Smolyanov O. G., “Semigroups and harmonic functions generated by Lévy Laplacians”, Dokl. Math., 384:3 (2002), 295–301 | MR | Zbl
[6] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Stud. Adv. Math.; Vol. 24, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[7] Neklyudov M. Yu., “Controllable stochastic dynamical system equivalent to the Navier–Stokes equation”, Russian J. Math. Phys., 12:2 (2005), 232–240 | MR | Zbl