Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a9, author = {M. Yu. Neklyudov}, title = {Equivalence of {Navier--Stokes} equation and infinite-dimensional {Burgers} equation}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {109--120}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a9/} }
TY - JOUR AU - M. Yu. Neklyudov TI - Equivalence of Navier--Stokes equation and infinite-dimensional Burgers equation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 109 EP - 120 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a9/ LA - ru ID - FPM_2006_12_5_a9 ER -
M. Yu. Neklyudov. Equivalence of Navier--Stokes equation and infinite-dimensional Burgers equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 109-120. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a9/
[1] Ikeda N., Vatanabe S., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986 | MR | Zbl
[2] Levi P., Konkretnye problemy funktsionalnogo analiza, Nauka, M., 1967 | MR
[3] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR
[4] Accardi L., Gibilisco P., Volovich I., “Yang–Mills gauge fields as harmonic functions for the Lévy Laplacian”, Russian J. Math. Phys., 2:2 (1994), 235–251 | MR
[5] Accardi L., Smolyanov O. G., “Semigroups and harmonic functions generated by Lévy Laplacians”, Dokl. Math., 384:3 (2002), 295–301 | MR | Zbl
[6] Kunita H., Stochastic Flows and Stochastic Differential Equations, Cambridge Stud. Adv. Math.; Vol. 24, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[7] Neklyudov M. Yu., “Controllable stochastic dynamical system equivalent to the Navier–Stokes equation”, Russian J. Math. Phys., 12:2 (2005), 232–240 | MR | Zbl