Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 75-82
Voir la notice de l'article provenant de la source Math-Net.Ru
The Dirichlet and Neumann problems are considered in the $n$-dimensional cube and in a right angle. The right-hand side is assumed to be bounded, and the boundary conditions are assumed to be zero. We obtain a priori bounds for solutions in the Zygmund space, which is wider than the Lipschitz space $C^{1,1}$ but narrower that the Hölder space $C^{1,\alpha}$, $0\alpha1$. Also, the first and second boundary problems are considered for the heat equation with similar conditions. It is shown that the solutions belongs to the corresponding Zygmund space.
@article{FPM_2006_12_5_a6,
author = {A. N. Konenkov},
title = {Dirichlet and {Neumann} problems for {Laplace} and heat equations in domains with right angles},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {75--82},
publisher = {mathdoc},
volume = {12},
number = {5},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/}
}
TY - JOUR AU - A. N. Konenkov TI - Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 75 EP - 82 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/ LA - ru ID - FPM_2006_12_5_a6 ER -
A. N. Konenkov. Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 75-82. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/