Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 75-82

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet and Neumann problems are considered in the $n$-dimensional cube and in a right angle. The right-hand side is assumed to be bounded, and the boundary conditions are assumed to be zero. We obtain a priori bounds for solutions in the Zygmund space, which is wider than the Lipschitz space $C^{1,1}$ but narrower that the Hölder space $C^{1,\alpha}$, $0\alpha1$. Also, the first and second boundary problems are considered for the heat equation with similar conditions. It is shown that the solutions belongs to the corresponding Zygmund space.
@article{FPM_2006_12_5_a6,
     author = {A. N. Konenkov},
     title = {Dirichlet and {Neumann} problems for {Laplace} and heat equations in domains with right angles},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/}
}
TY  - JOUR
AU  - A. N. Konenkov
TI  - Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 75
EP  - 82
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/
LA  - ru
ID  - FPM_2006_12_5_a6
ER  - 
%0 Journal Article
%A A. N. Konenkov
%T Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 75-82
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/
%G ru
%F FPM_2006_12_5_a6
A. N. Konenkov. Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 75-82. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/