Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet and Neumann problems are considered in the $n$-dimensional cube and in a right angle. The right-hand side is assumed to be bounded, and the boundary conditions are assumed to be zero. We obtain a priori bounds for solutions in the Zygmund space, which is wider than the Lipschitz space $C^{1,1}$ but narrower that the Hölder space $C^{1,\alpha}$, $0\alpha1$. Also, the first and second boundary problems are considered for the heat equation with similar conditions. It is shown that the solutions belongs to the corresponding Zygmund space.
@article{FPM_2006_12_5_a6,
     author = {A. N. Konenkov},
     title = {Dirichlet and {Neumann} problems for {Laplace} and heat equations in domains with right angles},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/}
}
TY  - JOUR
AU  - A. N. Konenkov
TI  - Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 75
EP  - 82
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/
LA  - ru
ID  - FPM_2006_12_5_a6
ER  - 
%0 Journal Article
%A A. N. Konenkov
%T Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 75-82
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/
%G ru
%F FPM_2006_12_5_a6
A. N. Konenkov. Dirichlet and Neumann problems for Laplace and heat equations in domains with right angles. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 75-82. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a6/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[2] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR

[3] Kozlov V. A., “Funktsiya Grina i yadra Puassona parabolicheskoi zadachi v oblasti s konicheskoi tochkoi”, Uspekhi mat. nauk, 43:3 (1988), 183–184 | MR | Zbl

[4] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, Uspekhi mat. nauk, 38:2 (1983), 4–76

[5] Konënkov A. N., Svoistva reshenii kraevykh zadach dlya uravneniya teploprovodnosti v prostranstvakh Zigmunda, Dep. v VINITI, no. 1902-B2003

[6] Fridman A., Uravneniya v chastnykh proizvodnykh parabolicheskogo tipa, Mir, M., 1968

[7] Khermander L., “Teoriya raspredelenii i analiz Fure”, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnym, 1, Mir, M., 1986

[8] Azzam A., Kreysig E., “On solutions of parabolic equations in regions with edges”, Bull. Austral. Math. Soc., 22 (1980), 219–230 | DOI | MR | Zbl

[9] Garroni M. G., Solonnikov V. A., Vivaldi M. A., “Existence and regularity results for oblique derivative problems for heat equtions in an angle”, Proc. Roy. Soc. Edinburgh. Sect. A, 128, 1998, 47–79 | MR | Zbl

[10] Grisvard P., Elliptic problems in nonsmooth domains., Pitman, London, 1985 | MR | Zbl