On the notion of quantum Lyapunov exponent
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical chaos refers to the property of trajectories to diverge exponentially as time $t\to\infty$. It is characterized by a positive Lyapunov exponent. There are many different descriptions of quantum chaos. One description related to the notion of generalized (quantum) Lyapunov exponent is based either on qualitative physical considerations or on the so-called symplectic tomography map. The purpose of this note is to show how the definition of quantum Lyapunov exponent naturally arises in the framework of the Moyal phase space formulation of quantum mechanics, and is based on the notions of quantum trajectories and the family of quantizers. The role of the Heisenberg uncertainty principle in the statement of the criteria for quantum chaos is made explicit.
@article{FPM_2006_12_5_a5,
     author = {M. F. Kondrat'eva and T. A. Osborn},
     title = {On the notion of quantum {Lyapunov} exponent},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {65--74},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a5/}
}
TY  - JOUR
AU  - M. F. Kondrat'eva
AU  - T. A. Osborn
TI  - On the notion of quantum Lyapunov exponent
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 65
EP  - 74
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a5/
LA  - ru
ID  - FPM_2006_12_5_a5
ER  - 
%0 Journal Article
%A M. F. Kondrat'eva
%A T. A. Osborn
%T On the notion of quantum Lyapunov exponent
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 65-74
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a5/
%G ru
%F FPM_2006_12_5_a5
M. F. Kondrat'eva; T. A. Osborn. On the notion of quantum Lyapunov exponent. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 65-74. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a5/

[1] Gelfand I. M., Graev M. I., Vilenkin N. Ya., “Obobschënnye funktsii”, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, 5, Dobrosvet, M., 2000

[2] Stratonovich R. L., “O raspredeleniyakh v izobrazhayuschem prostranstve”, ZhETF, 31:6 (1956), 1012–1020 | Zbl

[3] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization”, Ann. Phys., 111 (1978), 61–110 | DOI | MR | Zbl

[4] Bertrand J., Bertrand P., “Tomographic Procedure for Constructing Phase Space Representations”, The Physics of Phase Space, Nonlinear Dynamics and Chaos, Geometric Quantization, and Wigner Function (Proc. of the First Int. Conf. on the Physics of Phase Space, held at the University of Maryland, College Park, Maryland, May 20–23, 1986), Lect. Notes Phys., 278, eds. Y. S. Kim, W. W. Zachary, Springer, Berlin, 1987, 208 | MR

[5] Gracia-Bondia J. M., “Generalized Moyal quantization on homogeneous symplectic spaces”, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Proc. AMS-IMS-SIAM Jt. Summer Res. Conf.), 134, Contemp. Math., Amherst, MA (USA), 1990 ; Amer. Math. Soc. ; 1992, 93–113 | MR | Zbl

[6] Grosmann A., “Parity operator and quantization of $\delta$-functions”, Comm. Math. Phys., 48 (1976), 191–193 | DOI | MR

[7] Grossmann A., Huguenin P., “Group-theoretical aspects of the Wigner–Weyl isomorphism ”, Helv. Phys. Acta., 51 (1978), 252–261 | MR

[8] Man'ko V. I., Vilela Mendes R., “Lyapunov exponent in quantum mechanics. A phase space approach”, Physica D, 145 (2000), 330–348 | DOI | MR

[9] Osborn T. A., Molzahn F. H., “Moyal quantum mechanics: The semiclassical Heisenberg dynamics”, Ann. Phys., 241 (1995), 79–127 | DOI | MR | Zbl

[10] Royer A., “Wigner function as the expecttion value of a parity operator”, Phys. Rev. A., 15:2 (1977), 449–450 | DOI | MR

[11] Vilela Mendes R., “Sensitive dependence in quantum systems: Some examples and results”, Phys. Lett. A, 171 (1992), 253–258 | DOI | MR