The inverse problem for pencils of differential operators on the half-line with turning points
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 237-246

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning points is studied. We give a formulation of the inverse problem, establish properties of the spectral characteristics, and prove the uniqueness theorem for the solution of the inverse problem.
@article{FPM_2006_12_5_a17,
     author = {V. A. Yurko},
     title = {The inverse problem for pencils of differential operators on the half-line with turning points},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - The inverse problem for pencils of differential operators on the half-line with turning points
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 237
EP  - 246
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/
LA  - ru
ID  - FPM_2006_12_5_a17
ER  - 
%0 Journal Article
%A V. A. Yurko
%T The inverse problem for pencils of differential operators on the half-line with turning points
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 237-246
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/
%G ru
%F FPM_2006_12_5_a17
V. A. Yurko. The inverse problem for pencils of differential operators on the half-line with turning points. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 237-246. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/