The inverse problem for pencils of differential operators on the half-line with turning points
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 237-246
Voir la notice de l'article provenant de la source Math-Net.Ru
The inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning points is studied. We give a formulation of the inverse problem, establish properties of the spectral characteristics, and prove the uniqueness theorem for the solution of the inverse problem.
@article{FPM_2006_12_5_a17,
author = {V. A. Yurko},
title = {The inverse problem for pencils of differential operators on the half-line with turning points},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {237--246},
publisher = {mathdoc},
volume = {12},
number = {5},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/}
}
TY - JOUR AU - V. A. Yurko TI - The inverse problem for pencils of differential operators on the half-line with turning points JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 237 EP - 246 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/ LA - ru ID - FPM_2006_12_5_a17 ER -
V. A. Yurko. The inverse problem for pencils of differential operators on the half-line with turning points. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 237-246. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a17/