Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a15, author = {J. Kupsch and O. G. Smolyanov}, title = {Exact master equations describing reduced dynamics of the {Wigner} function}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {203--219}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/} }
TY - JOUR AU - J. Kupsch AU - O. G. Smolyanov TI - Exact master equations describing reduced dynamics of the Wigner function JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 203 EP - 219 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/ LA - ru ID - FPM_2006_12_5_a15 ER -
J. Kupsch; O. G. Smolyanov. Exact master equations describing reduced dynamics of the Wigner function. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 203-219. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/
[1] Albeverio S., Smolyanov O. G., “Teoremy Liuvill1ya dlya beskonechnomernykh sistem Gamiltona–Diraka”, Dokl. RAN, 355:1 (1997), 7–10 | MR | Zbl
[2] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, Izd-vo Mosk. un-ta, M., 1979
[3] Anglin J., Habib S., “Classical dynamics for linear systems: The case of quantum Brownian motion”, Mod. Phys. Lett. A, 11 (1996), 2655–2662 | DOI | MR | Zbl
[4] Baez J. C., Segal I. E., Zhou Z., Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Univ. Press, Princeton, 1992 | MR | Zbl
[5] Chernoff P., Marsden J., Properties of Infinite Dimensional Hamiltonian Systems, Lect. Notes Math.; Vol. 425, Springer, Berlin, 1974 | MR | Zbl
[6] Gelfand I. M., Shilov G. E., “Generalized Functions”, Theory of Differential Equations, 3, Academic Press, New York, 1967
[7] Halliwell J. J., Yu T., “Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion”, Phys. Rev. D., 53 (1996), 2012–2019 | DOI | MR
[8] Hudson R. L., “When is the Wigner quasi-probability density non-negative?”, Rep. Math. Phys., 6 (1974), 249–252 | DOI | MR | Zbl
[9] Kupsch J., “Decoherence and infrared divergence”, Pramana J. Phys., 59:2 (2002), 195–202 | DOI