Exact master equations describing reduced dynamics of the Wigner function
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 203-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

Master equations of different types describe the evolution (reduced dynamics) of a subsystem of a larger system generated by the dynamic of the latter system. Since in some cases the (exact) master equations are relatively complicated, there exist numerous approximations for such equations which are also called master equations. In the paper, one develops an exact master equation describing the reduced dynamics of the Wigner function for quantum systems obtained by a quantization of a Hamiltonian system with a quadratic Hamilton function. First, one considers an exact master equation for first integrals of ordinary differential equations in infinite-dimensional, locally convex spaces. After this, one applies the obtained results to develop an exact master equation corresponding to a Liouville type equation (which is the equations for first integrals of the (system of) Hamilton equation(s)); the latter master equation is called a master Liouville equation, it is a linear first-order differential equation with respect to a function of real variable taking values in a space of functions on the phase space. If the Hamilton equation generating the Liouville equation is linear, then the vector fields that define the first-order linear differential operators in the master Liouville equations are also linear, which in turn implies that for a Gaussian reference state the Fourier transform of a solution of the master Liouville equation also satisfies a linear differential equation.
@article{FPM_2006_12_5_a15,
     author = {J. Kupsch and O. G. Smolyanov},
     title = {Exact master equations describing reduced dynamics of the {Wigner} function},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {203--219},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/}
}
TY  - JOUR
AU  - J. Kupsch
AU  - O. G. Smolyanov
TI  - Exact master equations describing reduced dynamics of the Wigner function
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 203
EP  - 219
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/
LA  - ru
ID  - FPM_2006_12_5_a15
ER  - 
%0 Journal Article
%A J. Kupsch
%A O. G. Smolyanov
%T Exact master equations describing reduced dynamics of the Wigner function
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 203-219
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/
%G ru
%F FPM_2006_12_5_a15
J. Kupsch; O. G. Smolyanov. Exact master equations describing reduced dynamics of the Wigner function. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 203-219. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a15/

[1] Albeverio S., Smolyanov O. G., “Teoremy Liuvill1ya dlya beskonechnomernykh sistem Gamiltona–Diraka”, Dokl. RAN, 355:1 (1997), 7–10 | MR | Zbl

[2] Smolyanov O. G., Analiz na topologicheskikh lineinykh prostranstvakh i ego prilozheniya, Izd-vo Mosk. un-ta, M., 1979

[3] Anglin J., Habib S., “Classical dynamics for linear systems: The case of quantum Brownian motion”, Mod. Phys. Lett. A, 11 (1996), 2655–2662 | DOI | MR | Zbl

[4] Baez J. C., Segal I. E., Zhou Z., Introduction to Algebraic and Constructive Quantum Field Theory, Princeton Univ. Press, Princeton, 1992 | MR | Zbl

[5] Chernoff P., Marsden J., Properties of Infinite Dimensional Hamiltonian Systems, Lect. Notes Math.; Vol. 425, Springer, Berlin, 1974 | MR | Zbl

[6] Gelfand I. M., Shilov G. E., “Generalized Functions”, Theory of Differential Equations, 3, Academic Press, New York, 1967

[7] Halliwell J. J., Yu T., “Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion”, Phys. Rev. D., 53 (1996), 2012–2019 | DOI | MR

[8] Hudson R. L., “When is the Wigner quasi-probability density non-negative?”, Rep. Math. Phys., 6 (1974), 249–252 | DOI | MR | Zbl

[9] Kupsch J., “Decoherence and infrared divergence”, Pramana J. Phys., 59:2 (2002), 195–202 | DOI