Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a13, author = {E. Yu. Panov}, title = {On well-posedness classes of locally bounded generalized entropy solutions of the {Cauchy} problem for quasilinear first-order equations}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {175--188}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/} }
TY - JOUR AU - E. Yu. Panov TI - On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 175 EP - 188 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/ LA - ru ID - FPM_2006_12_5_a13 ER -
%0 Journal Article %A E. Yu. Panov %T On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 175-188 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/ %G ru %F FPM_2006_12_5_a13
E. Yu. Panov. On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 175-188. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/
[1] Benilan F., Kruzhkov P. N., “Kvazilineinye uravneniya pervogo poryadka s nepreryvnymi nelineinostyami”, Dokl. RAN, 339:2 (1994), 151–154 | MR | Zbl
[2] Goritskii A. Yu., “Postroenie neogranichennogo entropiinogo resheniya zadachi Koshi s beskonechnym chislom razryvov”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1999, no. 2, 3–6 | MR
[3] Goritskii A. Yu., Kruzhkov P. N., Chechkin G. A., Uravneniya s chastnymi proizvodnymi pervogo poryadka., Izd-vo Mosk. un-ta, M., 1999 | MR
[4] Goritskii A. Yu., Panov E. Yu., “O lokalno ogranichennykh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Tr. MIRAN im. V. A. Steklova, 236, 2002, 120–133 | MR
[5] Kruzhkov P. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81:2 (1970), 228–255 | Zbl
[6] Oleinik O. A., “O zadache Koshi dlya nelineinykh uravnenii v klasse razryvnykh funktsii”, DAN SSSR, 95:3 (1954), 451–455 | MR
[7] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i super-reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Differents. uravn., 37:2 (2001), 249–257 | MR
[8] Panov E. Yu., “K teorii obobschennykh entropiinykh reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka v klasse lokalno summiruemykh funktsii”, Izv. RAN. Ser. mat., 66:6 (2002), 91–136 | MR | Zbl
[9] Barthélemy L., “Probléme d'obstacle pour une équation quasilinéar du premier order”, Sci. Toulouse, 9:2 (1988), 137–159 | MR | Zbl
[10] Benilan Ph., Kruzhkov S. N., “Conservation laws with continuous flux functions”, NoDEA, 3 (1996), 395–419 | DOI | MR | Zbl
[11] Goritsky A. Yu., Panov E. Yu., “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russian J. Math. Phys., 6:4 (1999), 492–494 | MR | Zbl
[12] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII, 40 (1994–1995), 31–53 | MR