On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 175-188

Voir la notice de l'article provenant de la source Math-Net.Ru

We study scalar conservation laws with power growth restriction on the flux vector. For such equations, we found correctness classes for the Cauchy problem among locally bounded generalized entropy solutions. These classes are determined by some exponents of admissible growth with respect to space variables. We give examples showing that enlargement of the growth exponent leads to failure of the correctness.
@article{FPM_2006_12_5_a13,
     author = {E. Yu. Panov},
     title = {On well-posedness classes of locally bounded generalized entropy solutions of the {Cauchy} problem for quasilinear first-order equations},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {175--188},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 175
EP  - 188
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/
LA  - ru
ID  - FPM_2006_12_5_a13
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 175-188
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/
%G ru
%F FPM_2006_12_5_a13
E. Yu. Panov. On well-posedness classes of locally bounded generalized entropy solutions of the Cauchy problem for quasilinear first-order equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 175-188. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a13/