Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FPM_2006_12_5_a12, author = {I. V. Orlov}, title = {Principles of functional analysis in scales of spaces: {Hahn--Banach} theorem, {Banach} theorem on homomorphism, and theorems on open mapping and closed graph}, journal = {Fundamentalʹna\^a i prikladna\^a matematika}, pages = {153--173}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/} }
TY - JOUR AU - I. V. Orlov TI - Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 153 EP - 173 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/ LA - ru ID - FPM_2006_12_5_a12 ER -
%0 Journal Article %A I. V. Orlov %T Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 153-173 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/ %G ru %F FPM_2006_12_5_a12
I. V. Orlov. Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 153-173. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/
[1] Burbaki N., Teoriya mnozhestv, Mir, M., 1965
[2] Burbaki N., Topologicheskie vektornye prostranstva, Izd. inostr. lit., M., 1965
[3] Burgin M., “O teoreme Khana–Banakha dlya giperfunktsionalov”, Dokl. AN USSR, 1991, no. 2, 9–14 | MR
[4] Volevich L. R., Gindikin S. G., Obobschënnye funktsii i uravneniya v svërtkakh, Nauka, M, 1994 | MR | Zbl
[5] Gaidukevich O. I., Maslyuchenko V. K., “Odin metod pobudovi maizhe zamknenikh i ne zamknenikh mnozhin v induktivnikh granitsyakh”, Mizhnarodna konf. (prisvyachena 125 richnitsi vid dnya narodzhennya Gansa Gana. Tezi dopovidei), Chernivetskii nats. univ., Chernivtsi, 2004, 22–23
[6] Makarov B. M., “Ob induktivnom predele posledovatelnosti normirovannykh prostranstv”, DAN SSSR, 119:6 (1958), 1092–1094 | MR | Zbl
[7] Momot I. V., “Geometricheskaya forma teoremy Khana–Banakha dlya obobschënnoi vypuklosti”, Ukr. mat. zhurn., 55:2 (2003), 284–287 | MR | Zbl
[8] Orlov I. V., “Teorema Khana–Banakha v induktivnykh shkalakh prostranstv”, Dopovidi NAN Ukraini, 1997, no. 9, 32–36 | MR | Zbl
[9] Orlov I. V., “Printsipy funktsionalnogo analiza v shkalakh prostranstv: teorema Khana–Banakha”, Uchënye zapiski TNU, 2:13 (2000), 88–95
[10] Orlov I. V., “Teoremy o gomomorfizme, otkrytom otobrazhenii i zamknutom grafike v induktivnykh shkalakh prostranstv”, Uchënye zapiski TNU, 16 (55):2 (2003), 49–62 | MR
[11] Tyurin V. M., K obratimosti lineinykh differentsialnykh i funktsionalno-differentsialnykh operatorov:, Avtoref. dis. dokt. fiz.-mat. nauk: 01.01.02., Inst. mat. NAN Ukrainy, Kiev, 1996
[12] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR
[13] Edvards R., Funktsionalnyi analiz: teoriya i prilozheniya, Mir, M., 1969
[14] Aron R., Boyd C., Choi Y. S., “Unique Hahn–Banach theorems for spaces of homogeneous polynomials”, Austral. Math. Soc. Gaz., 70:3 (2001), 387–400 | DOI | MR | Zbl
[15] Banach S., “Sur les opérations daus les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1923), 133–181
[16] Banach S., Mazur S., “Zur Theorie der linearen Dimension”, Studia Math., 4 (1933), 100–112 | Zbl
[17] Bosch C., Kucěra J., “Closed bounded sets in inductive limits of $\mathcal K$-spaces”, Czechoslovak Math. J., 43 (118):2 (1993), 221–223 | MR | Zbl
[18] Bosch C., Kucěra J., “Sequential completeness and regularity of inductive limits of webbed spaces”, Czechoslovak Math. J., 52:2 (2002), 329–332 | DOI | MR | Zbl
[19] Buskes G., “The Hahn–Banach theorem surveyed”, Diss. Math., 327 (1993) | MR | Zbl
[20] Chang Zh., Xie P., “The closed subspaces of locally bounded spaces with Hahn–Banach-extension property”, Beihua Univ. Natur. Sci., 1:6 (2000), 468–469
[21] Ding G., “The Hahn–Banach extension property in not locally convex topological linear spaces”, Adv. Math. (China), 21 (1992), 427–431 | MR | Zbl
[22] Ferrer J. R., López P. M., Sánchez R. L. M., “Pták homomorphism theorem revisited”, Czechoslovak Math. J., 50:2 (2000), 341–346 | DOI | MR | Zbl
[23] Hahn H., “Über Folgen linearer Operationen”, Monatsh. Math., 32 (1922), 3–88 | DOI | MR | Zbl
[24] König H., “On some basic theorems in convex analysis”, Modern Applied Mathematics: Optimization and Operations Research, North-Holland, New York, 1982, 106–144 | MR
[25] Kučera J., “Sequential completeness of LF-spaces”, Czechoslovak Math. J., 51:1 (2001), 181–183 | DOI | MR
[26] Kucera J., Bosch C., “Dieudonné–Schwartz theorem on bounded sets in inductive limits”, Proc. Amer. Math. Soc., 86, no. 3, 1982, 392–394 | MR | Zbl
[27] Kucera J., McKennon K., “Bounded sets in inductive limits”, Proc. Amer. Math. Soc., 69, no. 1, 1978, 62–64 | MR | Zbl
[28] Luxemburg W. A. J., Väth M. Z., “The existence of non-trivial bounded functionals implies the Hahn–Banach extension theorem”, Z. Anal. Anwendungen., 20:2 (2001), 267–279 | MR | Zbl
[29] Malcěski R., “The Hahn–Banach theorem for bounded $n$-linear functionals”, Math. Bilt., 23 (1999), 47–58 | MR | Zbl
[30] Mulvey C., Pelletier J., “A globalization of the Hahn–Banach theorem”, Adv. Math., 89 (1991), 1–59 | DOI | MR | Zbl
[31] Orlov I. V., “Hahn–Banach theorem in linear and nonlinear scales of the topological vector spaces”, Spectral and Evolutionary Problems (Proc. of the Seventh Crimean Autumn Math. School-Symposium), 7, Simferopol State Univ., Simferopol, 1997, 27–31
[32] Orlov I. V., “Normal functional indices and normal duality”, Methods Funct. Anal. Topology, 8:3 (2002), 61–71 | MR | Zbl
[33] Orlov I. V., “Banach homomorphism theorem in inductive scales of spaces and its applications”, Methods Funct. Anal. Topology, 10:4 (2004), 74–85 | MR | Zbl
[34] Pérez-Garcia C., “The Hahn–Banach extension property in $p$-adic analysis”, $p$-Adic Functional Analysis, Lect. Notes Math. Vol. 137, Marcel Dekker, New York, 1992, 127–140 | MR
[35] Plewnia J., “A generalization of the Hahn–Banach theorem”, Ann. Polon. Math., 58 (1993), 47–51 | MR | Zbl
[36] Pták V., “Completeness and open mapping theorem”, Bull. Soc. Math. France, 86 (1958), 41–74 | MR | Zbl
[37] Pták V., “On the closed graph theorem”, Czechoslovak Math. J., 9 (1959), 523–527 | MR | Zbl
[38] Ruan G., “The dual Hahn–Banach theorem”, Natur. Sci. J. Xiangtan Univ., 14 (1992), 52–57 | MR | Zbl
[39] Saccoman J., “Extension theorems and the problem of measure”, Riv. Mat. Univ. Parma (5), 1 (1992), 287–293 | MR | Zbl
[40] Smolyanov O. G., “Nonclosed sequentially closed subsets of locally convex spaces and applications”, Note Mat., 12 (1992), 237–244 | MR | Zbl
[41] Su Y. F., “The Hahn–Banach theorem for a class of linear functionals in probabilistic normed spaces and its applications”, Neimenggu Shida Xuebao Ziran Kexue Ban, 1990, 16–22 | MR
[42] Treves F., Topological Vector Spaces, Distributions and Kernels, Academic Press, London, 1967 | MR | Zbl
[43] Wengenroth J., “Regularity of general weighted inductive limits”, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, 1999, no. 2, 251–255 | MR | Zbl
[44] Xiao J.-Zh., “Hahn–Banach theorem on fuzzy normed spaces”, J. Baoji College Arts Sci. Nat. Sci., 22:1 (2002), 11–14 | MR | Zbl
[45] Yang C., Zuo H., “An application of Hahn–Banach theorem to modulus of convexity”, Acta Math. Sci., 21:1 (2001), 133–137 | MR | Zbl