Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 153-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hahn–Banach theorem, the Banach theorem on homomorphism, and theorems on open mapping and closed graph are transferred to functionals and operators acting in inductive scales of spaces. The applications to the operators acting in inductive limits and dual spaces are considered.
@article{FPM_2006_12_5_a12,
     author = {I. V. Orlov},
     title = {Principles of functional analysis in scales of spaces: {Hahn--Banach} theorem, {Banach} theorem on homomorphism, and theorems on open mapping and closed graph},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {153--173},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/}
}
TY  - JOUR
AU  - I. V. Orlov
TI  - Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 153
EP  - 173
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/
LA  - ru
ID  - FPM_2006_12_5_a12
ER  - 
%0 Journal Article
%A I. V. Orlov
%T Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 153-173
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/
%G ru
%F FPM_2006_12_5_a12
I. V. Orlov. Principles of functional analysis in scales of spaces: Hahn--Banach theorem, Banach theorem on homomorphism, and theorems on open mapping and closed graph. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 5, pp. 153-173. http://geodesic.mathdoc.fr/item/FPM_2006_12_5_a12/

[1] Burbaki N., Teoriya mnozhestv, Mir, M., 1965

[2] Burbaki N., Topologicheskie vektornye prostranstva, Izd. inostr. lit., M., 1965

[3] Burgin M., “O teoreme Khana–Banakha dlya giperfunktsionalov”, Dokl. AN USSR, 1991, no. 2, 9–14 | MR

[4] Volevich L. R., Gindikin S. G., Obobschënnye funktsii i uravneniya v svërtkakh, Nauka, M, 1994 | MR | Zbl

[5] Gaidukevich O. I., Maslyuchenko V. K., “Odin metod pobudovi maizhe zamknenikh i ne zamknenikh mnozhin v induktivnikh granitsyakh”, Mizhnarodna konf. (prisvyachena 125 richnitsi vid dnya narodzhennya Gansa Gana. Tezi dopovidei), Chernivetskii nats. univ., Chernivtsi, 2004, 22–23

[6] Makarov B. M., “Ob induktivnom predele posledovatelnosti normirovannykh prostranstv”, DAN SSSR, 119:6 (1958), 1092–1094 | MR | Zbl

[7] Momot I. V., “Geometricheskaya forma teoremy Khana–Banakha dlya obobschënnoi vypuklosti”, Ukr. mat. zhurn., 55:2 (2003), 284–287 | MR | Zbl

[8] Orlov I. V., “Teorema Khana–Banakha v induktivnykh shkalakh prostranstv”, Dopovidi NAN Ukraini, 1997, no. 9, 32–36 | MR | Zbl

[9] Orlov I. V., “Printsipy funktsionalnogo analiza v shkalakh prostranstv: teorema Khana–Banakha”, Uchënye zapiski TNU, 2:13 (2000), 88–95

[10] Orlov I. V., “Teoremy o gomomorfizme, otkrytom otobrazhenii i zamknutom grafike v induktivnykh shkalakh prostranstv”, Uchënye zapiski TNU, 16 (55):2 (2003), 49–62 | MR

[11] Tyurin V. M., K obratimosti lineinykh differentsialnykh i funktsionalno-differentsialnykh operatorov:, Avtoref. dis. dokt. fiz.-mat. nauk: 01.01.02., Inst. mat. NAN Ukrainy, Kiev, 1996

[12] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[13] Edvards R., Funktsionalnyi analiz: teoriya i prilozheniya, Mir, M., 1969

[14] Aron R., Boyd C., Choi Y. S., “Unique Hahn–Banach theorems for spaces of homogeneous polynomials”, Austral. Math. Soc. Gaz., 70:3 (2001), 387–400 | DOI | MR | Zbl

[15] Banach S., “Sur les opérations daus les ensembles abstraits et leur application aux équations intégrales”, Fund. Math., 3 (1923), 133–181

[16] Banach S., Mazur S., “Zur Theorie der linearen Dimension”, Studia Math., 4 (1933), 100–112 | Zbl

[17] Bosch C., Kucěra J., “Closed bounded sets in inductive limits of $\mathcal K$-spaces”, Czechoslovak Math. J., 43 (118):2 (1993), 221–223 | MR | Zbl

[18] Bosch C., Kucěra J., “Sequential completeness and regularity of inductive limits of webbed spaces”, Czechoslovak Math. J., 52:2 (2002), 329–332 | DOI | MR | Zbl

[19] Buskes G., “The Hahn–Banach theorem surveyed”, Diss. Math., 327 (1993) | MR | Zbl

[20] Chang Zh., Xie P., “The closed subspaces of locally bounded spaces with Hahn–Banach-extension property”, Beihua Univ. Natur. Sci., 1:6 (2000), 468–469

[21] Ding G., “The Hahn–Banach extension property in not locally convex topological linear spaces”, Adv. Math. (China), 21 (1992), 427–431 | MR | Zbl

[22] Ferrer J. R., López P. M., Sánchez R. L. M., “Pták homomorphism theorem revisited”, Czechoslovak Math. J., 50:2 (2000), 341–346 | DOI | MR | Zbl

[23] Hahn H., “Über Folgen linearer Operationen”, Monatsh. Math., 32 (1922), 3–88 | DOI | MR | Zbl

[24] König H., “On some basic theorems in convex analysis”, Modern Applied Mathematics: Optimization and Operations Research, North-Holland, New York, 1982, 106–144 | MR

[25] Kučera J., “Sequential completeness of LF-spaces”, Czechoslovak Math. J., 51:1 (2001), 181–183 | DOI | MR

[26] Kucera J., Bosch C., “Dieudonné–Schwartz theorem on bounded sets in inductive limits”, Proc. Amer. Math. Soc., 86, no. 3, 1982, 392–394 | MR | Zbl

[27] Kucera J., McKennon K., “Bounded sets in inductive limits”, Proc. Amer. Math. Soc., 69, no. 1, 1978, 62–64 | MR | Zbl

[28] Luxemburg W. A. J., Väth M. Z., “The existence of non-trivial bounded functionals implies the Hahn–Banach extension theorem”, Z. Anal. Anwendungen., 20:2 (2001), 267–279 | MR | Zbl

[29] Malcěski R., “The Hahn–Banach theorem for bounded $n$-linear functionals”, Math. Bilt., 23 (1999), 47–58 | MR | Zbl

[30] Mulvey C., Pelletier J., “A globalization of the Hahn–Banach theorem”, Adv. Math., 89 (1991), 1–59 | DOI | MR | Zbl

[31] Orlov I. V., “Hahn–Banach theorem in linear and nonlinear scales of the topological vector spaces”, Spectral and Evolutionary Problems (Proc. of the Seventh Crimean Autumn Math. School-Symposium), 7, Simferopol State Univ., Simferopol, 1997, 27–31

[32] Orlov I. V., “Normal functional indices and normal duality”, Methods Funct. Anal. Topology, 8:3 (2002), 61–71 | MR | Zbl

[33] Orlov I. V., “Banach homomorphism theorem in inductive scales of spaces and its applications”, Methods Funct. Anal. Topology, 10:4 (2004), 74–85 | MR | Zbl

[34] Pérez-Garcia C., “The Hahn–Banach extension property in $p$-adic analysis”, $p$-Adic Functional Analysis, Lect. Notes Math. Vol. 137, Marcel Dekker, New York, 1992, 127–140 | MR

[35] Plewnia J., “A generalization of the Hahn–Banach theorem”, Ann. Polon. Math., 58 (1993), 47–51 | MR | Zbl

[36] Pták V., “Completeness and open mapping theorem”, Bull. Soc. Math. France, 86 (1958), 41–74 | MR | Zbl

[37] Pták V., “On the closed graph theorem”, Czechoslovak Math. J., 9 (1959), 523–527 | MR | Zbl

[38] Ruan G., “The dual Hahn–Banach theorem”, Natur. Sci. J. Xiangtan Univ., 14 (1992), 52–57 | MR | Zbl

[39] Saccoman J., “Extension theorems and the problem of measure”, Riv. Mat. Univ. Parma (5), 1 (1992), 287–293 | MR | Zbl

[40] Smolyanov O. G., “Nonclosed sequentially closed subsets of locally convex spaces and applications”, Note Mat., 12 (1992), 237–244 | MR | Zbl

[41] Su Y. F., “The Hahn–Banach theorem for a class of linear functionals in probabilistic normed spaces and its applications”, Neimenggu Shida Xuebao Ziran Kexue Ban, 1990, 16–22 | MR

[42] Treves F., Topological Vector Spaces, Distributions and Kernels, Academic Press, London, 1967 | MR | Zbl

[43] Wengenroth J., “Regularity of general weighted inductive limits”, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid, 1999, no. 2, 251–255 | MR | Zbl

[44] Xiao J.-Zh., “Hahn–Banach theorem on fuzzy normed spaces”, J. Baoji College Arts Sci. Nat. Sci., 22:1 (2002), 11–14 | MR | Zbl

[45] Yang C., Zuo H., “An application of Hahn–Banach theorem to modulus of convexity”, Acta Math. Sci., 21:1 (2001), 133–137 | MR | Zbl