Counting solutions in bifurcation problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 149-167
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we use the topological degree to obtain some sharp lower bounds for the number of solutions of the parameter slices of the semi-bounded components of the set of nontrivial solutions of an abstract nonlinear equation with a trivial state. By a semi-bounded component, we mean a component that is bounded in one direction of the parameter. The spectrum of the linearization of the equation at the trivial state is not assumed to be discrete.
@article{FPM_2006_12_4_a9,
author = {J. Lopez-Gomez and C. Mora-Corral},
title = {Counting solutions in bifurcation problems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {149--167},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/}
}
J. Lopez-Gomez; C. Mora-Corral. Counting solutions in bifurcation problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 149-167. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/