Counting solutions in bifurcation problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 149-167
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we use the topological degree to obtain some sharp lower bounds for the number of solutions of the parameter slices of the semi-bounded components of the set of nontrivial solutions of an abstract nonlinear equation with a trivial state. By a semi-bounded component, we mean a component that is bounded in one direction of the parameter. The spectrum of the linearization of the equation at the trivial state is not assumed to be discrete.
@article{FPM_2006_12_4_a9,
     author = {J. Lopez-Gomez and C. Mora-Corral},
     title = {Counting solutions in bifurcation problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--167},
     year = {2006},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/}
}
TY  - JOUR
AU  - J. Lopez-Gomez
AU  - C. Mora-Corral
TI  - Counting solutions in bifurcation problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 149
EP  - 167
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/
LA  - ru
ID  - FPM_2006_12_4_a9
ER  - 
%0 Journal Article
%A J. Lopez-Gomez
%A C. Mora-Corral
%T Counting solutions in bifurcation problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 149-167
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/
%G ru
%F FPM_2006_12_4_a9
J. Lopez-Gomez; C. Mora-Corral. Counting solutions in bifurcation problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 149-167. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/

[1] Amann H., “Fixed point equations and nonlinear eigenvalue problems in orderred Banach spaces”, SIAM Rev., 18 (1976), 620–709 | DOI | MR | Zbl

[2] Fitzpatrick P. M., Pejsachowicz J., Mem. Amer. Math. Soc.; Vol. 483, Amer. Math. Soc., 1993 | MR

[3] Gohberg I., Goldberg S., Kaashoek M. A., Classes of Linear Operators, 1, Birkhäuser, Basel, 1990 ; Operator Theory; Advances and Applications; 49 | MR | Zbl

[4] Kuratowski K., Topology, II, Academic Press, New York ; PWN Polish Scientific Publishers; Warsaw, 1968 | Zbl

[5] López-Gómez J., Spectral Theory and Nonlinear Functional Analysis, Research Notes Math. Vol. 426, CRC Press, Chapman and Hall, Boca Raton, 2001 | MR | Zbl

[6] López-Gómez J., Mora-Corral C., “Minimal complexity of semi-bounded components in bifurcation theory”, Nonlinear Anal. Theory Methods Appl., 58:7–8 (A) (2004), 749–777 | DOI | MR | Zbl

[7] Magnus R. J., “A generalization of multiplicity and the problem of bifurcation”, Proc. London Math. Soc., 6 (1976), 251–278 | DOI | MR

[8] Mawhin J., “Leray–Schauder degree: A half century of extensions and applications”, Topol. Methods Nonlinear Anal., 14, 1999, 195–228 | MR | Zbl

[9] Rabinowitz P. H, “Some global results for nonlinear eigenvalue problems”, J. Funct. Anal., 7 (1971), 487–513 | DOI | MR | Zbl

[10] Whyburn G. T., Topological Analysis, Princeton Univ. Press, Princeton, 1958 | MR | Zbl