Counting solutions in bifurcation problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 149-167.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we use the topological degree to obtain some sharp lower bounds for the number of solutions of the parameter slices of the semi-bounded components of the set of nontrivial solutions of an abstract nonlinear equation with a trivial state. By a semi-bounded component, we mean a component that is bounded in one direction of the parameter. The spectrum of the linearization of the equation at the trivial state is not assumed to be discrete.
@article{FPM_2006_12_4_a9,
     author = {J. Lopez-Gomez and C. Mora-Corral},
     title = {Counting solutions in bifurcation problems},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--167},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/}
}
TY  - JOUR
AU  - J. Lopez-Gomez
AU  - C. Mora-Corral
TI  - Counting solutions in bifurcation problems
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 2006
SP  - 149
EP  - 167
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/
LA  - ru
ID  - FPM_2006_12_4_a9
ER  - 
%0 Journal Article
%A J. Lopez-Gomez
%A C. Mora-Corral
%T Counting solutions in bifurcation problems
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 2006
%P 149-167
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/
%G ru
%F FPM_2006_12_4_a9
J. Lopez-Gomez; C. Mora-Corral. Counting solutions in bifurcation problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 149-167. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a9/

[1] Amann H., “Fixed point equations and nonlinear eigenvalue problems in orderred Banach spaces”, SIAM Rev., 18 (1976), 620–709 | DOI | MR | Zbl

[2] Fitzpatrick P. M., Pejsachowicz J., Mem. Amer. Math. Soc.; Vol. 483, Amer. Math. Soc., 1993 | MR

[3] Gohberg I., Goldberg S., Kaashoek M. A., Classes of Linear Operators, 1, Birkhäuser, Basel, 1990 ; Operator Theory; Advances and Applications; 49 | MR | Zbl

[4] Kuratowski K., Topology, II, Academic Press, New York ; PWN Polish Scientific Publishers; Warsaw, 1968 | Zbl

[5] López-Gómez J., Spectral Theory and Nonlinear Functional Analysis, Research Notes Math. Vol. 426, CRC Press, Chapman and Hall, Boca Raton, 2001 | MR | Zbl

[6] López-Gómez J., Mora-Corral C., “Minimal complexity of semi-bounded components in bifurcation theory”, Nonlinear Anal. Theory Methods Appl., 58:7–8 (A) (2004), 749–777 | DOI | MR | Zbl

[7] Magnus R. J., “A generalization of multiplicity and the problem of bifurcation”, Proc. London Math. Soc., 6 (1976), 251–278 | DOI | MR

[8] Mawhin J., “Leray–Schauder degree: A half century of extensions and applications”, Topol. Methods Nonlinear Anal., 14, 1999, 195–228 | MR | Zbl

[9] Rabinowitz P. H, “Some global results for nonlinear eigenvalue problems”, J. Funct. Anal., 7 (1971), 487–513 | DOI | MR | Zbl

[10] Whyburn G. T., Topological Analysis, Princeton Univ. Press, Princeton, 1958 | MR | Zbl