Decay of the solution of the first mixed problem for a~high-order parabolic equation with minor terms
Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 113-132
Voir la notice de l'article provenant de la source Math-Net.Ru
In a cylindric domain $D=(0,\infty)\times\Omega$, where $\Omega\subset \mathbb{R}_{n+1}$ is an unbounded domain, the first mixed problem for a high-order parabolic equation
\begin{gather*}
u_t+(-1)^kD_x^k(a(x,\mathbf{y})D_x^ku)+\sum\limits_{i=l}^m\sum\limits_{|\alpha|=|\beta|=i}(-1)^i D_\mathbf{y}^{\alpha}(b_{\alpha\beta}(x,\mathbf{y})D_{\mathbf{y}}^{\beta}u)=0,
\\
l\leq m,\quad k,l,m\in \mathbb{N},
\end{gather*}
is considered. The boundary values are homogeneous and the initial value is a finite function. In terms of new geometrical characteristic of domain, the upper estimate of $L_2$-norm $\|u(t)\|$ of the solution to the problem is established. In particular, in domains $\{(x,\mathbf y)\in\mathbb{R}_{n+1}\mid x>0,\ |y_1|$, $0$, under the assumption that the upper an lower symbols of the operator $L$ are separated from zero, this estimate takes the form
$$
\|u(t)\|\leq M\exp(-\varkappa_2t^{b})\|\varphi\|,\quad
b=\frac{k-la}{k-la+2lak}.
$$
This estimate is determined by minor terms of the equation. The sharpness of the estimate for the wide class of unbounded domains is proved in the case $k=l=m=1$.
@article{FPM_2006_12_4_a7,
author = {L. M. Kozhevnikova and F. Kh. Mukminov},
title = {Decay of the solution of the first mixed problem for a~high-order parabolic equation with minor terms},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {113--132},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a7/}
}
TY - JOUR AU - L. M. Kozhevnikova AU - F. Kh. Mukminov TI - Decay of the solution of the first mixed problem for a~high-order parabolic equation with minor terms JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 2006 SP - 113 EP - 132 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a7/ LA - ru ID - FPM_2006_12_4_a7 ER -
%0 Journal Article %A L. M. Kozhevnikova %A F. Kh. Mukminov %T Decay of the solution of the first mixed problem for a~high-order parabolic equation with minor terms %J Fundamentalʹnaâ i prikladnaâ matematika %D 2006 %P 113-132 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a7/ %G ru %F FPM_2006_12_4_a7
L. M. Kozhevnikova; F. Kh. Mukminov. Decay of the solution of the first mixed problem for a~high-order parabolic equation with minor terms. Fundamentalʹnaâ i prikladnaâ matematika, Tome 12 (2006) no. 4, pp. 113-132. http://geodesic.mathdoc.fr/item/FPM_2006_12_4_a7/